- 博客(7)
- 收藏
- 关注
原创 写一个考研政治的一点心得
(其实知识手册都太多太厚了我没看完,主要就背背错题,我用了个笨办法:针对我这种记忆力超级垃圾的,把错题知识点写在A4纸上,然后同类型的再遇到了可以写在旁边,我研友当时都不理解哈哈哈,A4纸记东西很快,你就想着只有一页,每一个知识点都是一个漏洞,背了就会了,甚至用英文代替中文写的快,这个方法还得常看常记)但是我觉得我前面有一个大题答的很好,写了超多字这里浪费了时间。我记得考场上选择单选我做的很快,很多原题,虽然有个别猴子出没,到了多选就有点难,什么鬼地租都出来了,不过大部分还是常规题的,可以试着蒙一蒙。
2025-03-11 02:19:56
266
原创 一战数一130的一点点小经验
(还有别看网上的模拟哥,都是搞心态的)学数学整个过程是非常痛苦的,从0基础开始,无时无刻的不在受打击,但是慢慢的当强化能自己完整的写出好多题来的时候就有一些成就感了,刚觉得自己建立好了完整的系统(就像穿了铠甲的士兵)一写模拟卷(剑就刺入了没准备到的地方)哈哈哈哈所以又得一遍一遍的磨。高数基础这个各有神通了,我看的也很杂,章鱼老师高数讲课有点点啰嗦,我老爱走神哈哈哈所以一般去b站找点不熟悉的知识点视频补补课(这个时候就要推荐我的宝藏up了:吃尽天下面,面哥会讲很多计算技巧,没咋了,咋子哥线代无敌,小荷花!
2025-03-11 01:39:54
1810
5
原创 回归分析——美洲新冠疫情感染人数预测
nn.module是torch库里的模型框架:初始化和前向过程。前向过程:数据怎么通过模型的。模型要关注维度变化,回归是全链接,然后linear是线性的,上一层Linear的输出一定是下一层的输入维度,最后是变为1维!#将模型移动到指定的设备上(CPU或GPU),以便模型可以在该设备上运行#save_path保存路径#初始化两个空列表,用于存储训练和验证过程中的损失值#初始化一个非常大的数作为最小验证损失,用于后续比较并保存最佳模型#遍历每个训练轮次#在每个轮次开始时,重置训练和验证损失为0。
2025-02-14 22:12:18
1838
原创 一个线性回归模型
import torch #将矩阵变成张量,便于求导import matplotlib.pyplot as plt # 画图的import random #随机# 生成数据# 0为均值,1为方差,长度为date_num,宽度为len(w)# matmul表示矩阵相乘,y=x*w+b,x是500*4维,w是4*1维的,Y是500*1维的,b是一个数字noise = torch.normal(0, 0.01, y.shape) #噪声要加到y上y += noisenum = 500。
2025-02-14 16:24:55
712
1
原创 第0章深度学习的基础知识
例如我们去定义一个一元线性函数,公式为,其中x自变量,y应变量,w是权重(weight),偏差(bias),然后让机器带入x和y值去模拟出比较良好的w和b值损失loss可以定义成 |真实值-拟合值| ,还可以定义成其他的(什么均绝对误差、均方误差)
2025-02-08 21:57:33
240
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人