1.技术栈:springboot+mybatis-plus+mysql+redis
2.推荐算法设计
推荐算法设计
本文选用基于用户的协同过滤算法,首先寻找与先被推荐的用户兴趣相似的用户群,将用户喜欢或没有行动的音乐推荐给被推荐的用户。其实,这种方法也是对用户进行群集的过程,根据用户的兴趣和兴趣,将用户变成不同的群体。用户推荐是根据组的平均值生成的。使用者兴趣相似度的测定是官方系统的测定,两个使用者在收藏目录中收藏相同音乐的次数越多,两个使用者的兴趣就越相似。
算法流程:
- 根据用户与音乐的喜好矩阵,构建用户–音乐的倒排(即倒查表)。
行表示用户,列表示音乐,1 表示用户喜欢该音乐,?表示用户是否喜欢该音乐未知。如表8所示:
表8 用户-音乐表
用户\音乐 |
音乐a |
音乐b |
音乐c |
音乐d |
音乐e |
用户1 |
1 |
1 |
? |
1 |
1 |
用户2 |
? |
1 |