基于springboot的音乐推荐系统设计与实现

该系统采用springboot+mybatis-plus+mysql+redis技术栈,实现了音乐推荐功能,运用基于用户的协同过滤算法进行推荐,通过构建用户-音乐的倒排表、共现矩阵和相似度矩阵计算用户兴趣相似性。此外,系统还包含音乐播放、用户登录、音乐评论和管理功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.技术栈:springboot+mybatis-plus+mysql+redis

2.推荐算法设计

推荐算法设计

本文选用基于用户的协同过滤算法,首先寻找与先被推荐的用户兴趣相似的用户群,将用户喜欢或没有行动的音乐推荐给被推荐的用户。其实,这种方法也是对用户进行群集的过程,根据用户的兴趣和兴趣,将用户变成不同的群体。用户推荐是根据组的平均值生成的。使用者兴趣相似度的测定是官方系统的测定,两个使用者在收藏目录中收藏相同音乐的次数越多,两个使用者的兴趣就越相似。

算法流程:

  1. 根据用户与音乐的喜好矩阵,构建用户音乐的倒排(即倒查表)。

行表示用户,列表示音乐,1 表示用户喜欢该音乐,?表示用户是否喜欢该音乐未知。如表8所示:

表8 用户-音乐表

用户\音乐

音乐a

音乐b

音乐c

音乐d

音乐e

用户1

1

1

1

1

用户2

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值