自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 机器翻译与实例分析

在本实验中,我们将探索如何使用编码器-解码器结构和注意力机制来实现一个简单的机器翻译系统。具体来说,我们将使用PyTorch框架构建一个翻译器,使用含注意力机制的编码器—解码器来翻译句子,训练模型后进行预测与评价翻译结果。编码器-解码器结构: 我们将介绍编码器如何将输入序列编码为上下文向量,以及解码器如何利用这个上下文向量生成目标语言序列。注意力机制: 我们将详细探讨注意力机制的原理和如何在模型中实现,以便模型可以根据输入的不同部分调整其翻译焦点。实验目标。

2024-06-24 20:57:55 1506

原创 基于神经网络的姓氏分类

目录目录前言1. 实验介绍1.1 背景引入1.2 实验要点2. 多层感知机2.1 概述2.2 基本结构2.3 示例:带有多层感知器的姓氏分类2.3.1 导入库和软件包2.3.2 数据集引入2.3.3 数据矢量化2.3.4 定义MLP模型2.3.5 模型训练2.3.6 模型评估与预测2.4 带Dropout的MLP实现3. 卷积神经网络3.1 概述3.2 基本结构3.3 超参数3.4 示例:使用CNN

2024-06-13 17:46:41 1068

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除