【人工智能】提示词优化:针对“输出冗长”的精简提示策略

提示词优化:针对 “输出冗长” 的精简提示策略

**

在 AI 工具使用过程中,很多人都会遇到 “输出冗长” 的问题。比如想让 AI 写一段产品介绍,结果 AI 给出的内容包含大量重复信息,还夹杂着无关的背景说明;想让 AI 解答一个技术问题,AI 却先铺垫了很多基础概念,核心答案反而藏在大段文字里。这种情况不仅浪费阅读时间,还会影响工作效率。

造成输出冗长的原因有很多,其中最主要的是提示词不够精准。如果提示词里没有明确要求输出的长度、结构和核心重点,AI 就可能按照默认的 “全面性” 逻辑,生成超出需求的内容。所以,优化提示词是解决输出冗长问题的关键。本文会详细介绍针对 “输出冗长” 的精简提示策略,帮助大家让 AI 输出更简洁、更实用的内容。

1 先搞清楚 “输出冗长” 的具体表现和危害

在优化提示词之前,我们得先明确 “输出冗长” 到底有哪些表现,以及这些表现会带来什么危害。只有清楚了问题的本质,后续的优化策略才能更有针对性。

1.1 输出冗长的 3 种常见表现

  • 内容重复:同一观点或信息在输出中多次出现。比如让 AI 写 “如何提高代码效率”,AI 可能在不同段落里反复强调 “减少冗余代码”,只是表述方式略有不同。
  • 无关信息过多:包含与核心需求不相关的内容。比如想让 AI 解释 “Python 列表和元组的区别”,AI 却花了大量篇幅介绍 Python 的发展历史、其他数据类型的基本用法。
  • 结构松散:没有清晰的逻辑框架,内容东拉西扯。比如让 AI 写一份 “接口测试步骤”,AI 输出的内容没有分步骤,而是把准备工作、执行测试、结果分析混在一起,还穿插了很多无关的注意事项。

1.2 输出冗长带来的 4 个危害

  • 浪费时间:需要从大段文字中筛选核心信息,原本 1 分钟能获取的答案,可能要花 5 分钟甚至更久。
  • 降低效率:如果是用于工作场景,比如写报告、写代码注释,冗长的输出还需要手动修改精简,反而增加了额外工作量。
  • 干扰判断:过多的无关信息可能会让人忽略核心内容,甚至产生理解偏差。比如在技术问题解答中,无关的概念可能会误导初学者。
  • 占用资源:如果 AI 输出的内容需要存储或传输,冗长的文本会占用更多的存储空间和带宽,尤其是在批量处理任务时,影响会更明显。

2 精简提示策略的核心原则:明确、聚焦、具体

要让 AI 输出精简的内容,提示词必须遵循三个核心原则:明确、聚焦、具体。这三个原则是所有精简提示策略的基础,不管是调整提示词结构,还是添加限制条件,都要围绕这三点展开。

2.1 原则一:明确输出要求

“明确” 指的是在提示词里清楚告诉 AI 输出的长度、格式、风格。很多时候输出冗长,就是因为没有给 AI 一个清晰的 “边界”,AI 不知道该写到什么程度才算合适。

比如,想让 AI 写一段 “Java 异常处理的作用”,如果提示词是 “介绍一下 Java 异常处理的作用”,AI 可能会写几百字的内容,包含各种细节。但如果把提示词改成 “用 3 句话介绍 Java 异常处理的核心作用,每句话不超过 20 字”,AI 输出的内容就会非常精简,且符合需求。

2.2 原则二:聚焦核心需求

“聚焦” 指的是在提示词里突出核心问题,去掉无关的铺垫和修饰。很多人在写提示词时,会不自觉地添加一些背景信息,但这些信息往往会让 AI 的注意力分散,从而生成冗长的内容。

比如,想让 AI 帮忙写一个 “计算 1 到 100 累加和的 Python 代码”,如果提示词是 “我最近在学 Python,老师布置了一个作业,需要计算 1 到 100 的累加和,你能帮我写一下代码吗?”,AI 可能会先回应学习情况,再解释代码的原理,最后才给出代码。但如果把提示词改成 “写一个计算 1 到 100 累加和的 Python 代码,只给代码,不解释”,AI 就会直接输出核心内容。

2.3 原则三:具体限制条件

“具体” 指的是在提示词里添加明确的限制条件,比如禁止出现某些内容、必须包含某些关键点。这样可以进一步约束 AI 的输出,避免出现冗余信息。

比如,想让 AI 写 “Redis 的优势”,如果提示词是 “介绍 Redis 的优势”,AI 可能会列出很多优势,其中有些优势可能不是你需要的。但如果把提示词改成 “介绍 Redis 的 3 个核心优势,分别是高性能、支持多种数据结构、可持久化,每个优势用 1 句话说明,不添加其他优势”,AI 输出的内容就会精准聚焦在你需要的关键点上,不会有多余信息。

3 5 个实用的精简提示策略(附案例)

在掌握核心原则后,我们可以通过 5 个具体的策略来优化提示词,解决输出冗长问题。每个策略都有详细的案例对比,方便大家理解和套用。

3.1 策略一:添加长度限制 —— 给 AI 设定 “字数 / 段落边界”

长度限制是最直接、最有效的精简策略。通过明确要求输出的字数、句子数或段落数,让 AI 在固定的 “框架” 内生成内容,避免无限制扩展。

3.1.1 常见的长度限制表述
  • 字数限制:“输出内容控制在 100 字以内”“不超过 200 字”“至少 50 字,最多 80 字”。
  • 句子数限制:“用 2 句话回答”“分 3 个句子说明”。
  • 段落数限制:“写 1 个段落,不超过 3 行”“分 2 个段落,每个段落不超过 2 句话”。
3.1.2 案例对比
  • 原始提示词:“介绍一下 MySQL 索引的作用”
  • AI 原始输出(约 150 字):MySQL 索引是数据库中非常重要的组成部分,它的主要作用是提高查询效率。当我们在查询数据时,如果没有索引,数据库需要逐行扫描表中的所有数据,这个过程叫做全表扫描,效率非常低,尤其是在表中数据量很大的时候。而有了索引之后,数据库可以通过索引快速定位到需要查询的数据,就像书的目录一样,能快速找到对应的章节。除了提高查询效率,索引还能帮助维护数据的唯一性,比如主键索引就可以确保表中每行数据的主键不重复,避免数据重复插入。
  • 优化后提示词:“用 3 句话介绍 MySQL 索引的作用,每句话不超过 25 字”
  • AI 优化后输出(约 70 字):1. MySQL 索引能像书的目录,帮数据库快速定位查询数据。2. 索引可避免全表扫描,大幅提高查询效率。3. 主键索引能维护数据唯一性,防止重复插入。

3.2 策略二:明确输出结构 —— 让 AI 按 “固定格式” 生成内容

明确输出结构可以让 AI 的内容更有条理,同时避免无关信息的插入。常见的结构包括分点、分步骤、分模块等,通过指定结构,AI 会聚焦在每个模块的核心内容上,不会随意扩展。

3.2.1 常见的结构要求表述
  • 分点结构:“分 3 点说明,每点用‘1. 2. 3.’开头,每点不超过 50 字”。
  • 分步骤结构:“按步骤说明,步骤用‘第一步、第二步、第三步’表示,每步只写核心操作”。
  • 分模块结构:“分为‘优势、缺点、适用场景’3 个模块,每个模块写 1 句话”。
3.2.2 案例对比
  • 原始提示词:“说明一下前端开发中 Vue 框架的使用流程”
  • AI 原始输出(约 200 字):在前端开发中,使用 Vue 框架的流程其实不算复杂。首先,你需要准备好开发环境,比如安装 Node.js,因为 Vue 的项目管理工具 Vue CLI 需要依赖 Node.js。安装好 Node.js 之后,就可以通过 npm 命令安装 Vue CLI 了,安装完成后,就可以用 Vue CLI 创建一个新的 Vue 项目,创建过程中会让你选择一些配置,比如是否使用 TypeScript、是否添加路由等。项目创建好之后,就可以打开项目目录,用代码编辑器比如 VS Code 打开项目文件,然后开始编写组件,Vue 的核心是组件化开发,所以你需要创建不同的组件,然后在 App.vue 中引入这些组件。编写完组件后,还需要配置路由,让不同的组件对应不同的页面路径,最后可以用 npm run serve 命令启动开发服务器,在浏览器中查看项目效果,如果没问题,就可以打包部署了。
  • 优化后提示词:“按步骤说明前端开发中 Vue 框架的核心使用流程,分 4 步,每步用‘第一步、第二步’开头,每步只写核心操作,不超过 30 字”
  • AI 优化后输出(约 120 字):第一步:安装 Node.js,用 npm 装 Vue CLI。第二步:通过 Vue CLI 创建 Vue 项目,选择基础配置。第三步:编写组件,在 App.vue 中引入组件。第四步:配置路由,用 npm run serve 启动项目。

3.3 策略三:聚焦核心问题 —— 去掉 “无关铺垫”,直接提问

很多人在写提示词时,会先描述背景、需求来源等铺垫内容,这些内容虽然能让 AI 了解上下文,但也可能让 AI 过度展开。直接聚焦核心问题,去掉无关铺垫,可以让 AI 快速定位到需求重点,输出更精简的内容。

3.3.1 聚焦核心问题的技巧
  • 去掉背景描述:比如把 “我最近在做一个电商项目,需要设计商品详情页的接口,想知道接口设计要注意什么” 改成 “电商项目商品详情页接口设计的 3 个注意事项”。
  • 去掉修饰词:比如把 “请你详细地、全面地介绍一下 React 的虚拟 DOM” 改成 “介绍 React 虚拟 DOM 的核心原理,不超过 80 字”。
3.3.2 案例对比
  • 原始提示词:“我是一名刚入职的后端开发工程师,领导让我写一份接口文档,我之前没写过,不知道该包含哪些内容,你能告诉我吗?”
  • AI 原始输出(约 180 字):首先,恭喜你入职新公司!作为刚入职的后端开发,第一次写接口文档不用紧张,其实接口文档的核心是让使用接口的人(比如前端开发)能清楚了解接口的用法。接口文档需要包含的内容其实有很多,但最核心的几个部分是必须有的。首先是接口基本信息,比如接口名称、接口 URL、请求方法(GET/POST 等),这些是最基础的,能让别人知道这个接口是做什么的,怎么访问。然后是请求参数,需要列出每个参数的名称、类型、是否必填、说明,比如参数 name 是字符串类型,必填,说明是 “用户名”。接下来是响应数据,包括成功响应和失败响应的格式,比如成功时返回的 code、message 和数据内容,失败时返回的错误码和错误信息。另外,可能还需要包含接口的备注信息,比如接口的适用场景、注意事项等,但如果是基础的接口文档,前面几个核心部分就够了。
  • 优化后提示词:“后端接口文档必须包含的 4 个核心内容,分点说明,每点不超过 20 字”
  • AI 优化后输出(约 80 字):1. 接口基本信息:名称、URL、请求方法。2. 请求参数:名称、类型、是否必填、说明。3. 响应数据:成功和失败的格式。4. 备注:适用场景、注意事项。

3.4 策略四:禁止无关内容 —— 明确 “不能写什么”

有时候,即使明确了输出要求,AI 还是会添加一些无关内容,比如额外的解释、扩展知识。这时候可以在提示词里明确禁止这些内容,进一步约束 AI 的输出范围。

3.4.1 禁止无关内容的表述方式
  • 禁止解释:“只给结果,不解释原理”“不添加额外说明”。
  • 禁止扩展:“不介绍相关概念”“不包含其他类似内容”。
  • 禁止重复:“不重复表述同一内容”“避免同一信息多次出现”。
3.4.2 案例对比
  • 原始提示词:“写一个计算两个数相加的 JavaScript 函数”
  • AI 原始输出(约 120 字):计算两个数相加的 JavaScript 函数其实很简单,下面我会给你写一个基础的函数。首先,函数的作用是接收两个参数,然后返回它们的和。函数的定义可以用 function 关键字,比如 function add (a, b),其中 a 和 b 是两个要相加的数。然后在函数体内,用 return a + b; 返回结果。需要注意的是,这个函数默认接收的是数字类型的参数,如果传入的是字符串,可能会出现拼接的情况,比如 add ('1', '2') 会返回 '12' 而不是 3,所以在实际使用时可以添加参数类型判断,但如果只是基础需求,下面的函数就够了:function add (a, b) { return a + b; }
  • 优化后提示词:“写一个计算两个数相加的 JavaScript 函数,只给函数代码,不解释原理,不添加注意事项”
  • AI 优化后输出(约 30 字):function add (a, b) {

return a + b;

}

3.5 策略五:指定输出风格 —— 让 AI 用 “简洁语言” 表达

不同的输出风格会影响内容的冗长程度。如果要求 AI 用 “简洁、直白” 的语言,避免 “书面化、复杂” 的表述,AI 输出的内容会更精炼,减少不必要的修饰。

3.5.1 常见的简洁风格要求
  • 语言风格:“用口语化的简洁语言”“避免复杂句式,用简单句”。
  • 表述方式:“直接说重点,不绕弯子”“去掉形容词、副词,只保留核心信息”。
3.5.2 案例对比
  • 原始提示词:“介绍一下 HTTP 协议中的 GET 和 POST 方法的区别”
  • AI 原始输出(约 180 字):在 HTTP 协议的众多请求方法中,GET 和 POST 是最为常用的两种,它们在功能和使用场景上存在着多方面的区别。首先,从请求参数的位置来看,GET 方法的请求参数通常会附加在 URL 的后面,以问号为分隔符,参数之间用 & 连接,这种方式使得参数在 URL 中可见;而 POST 方法的请求参数则是放在请求体(Request Body)中,不会在 URL 中显示,相对来说更为安全。其次,从参数长度的限制来看,由于 URL 的长度存在一定的限制(不同浏览器和服务器的限制不同,通常在几 KB 到几十 KB 之间),所以 GET 方法携带的参数长度也会受到限制;而 POST 方法的参数放在请求体中,其长度限制主要取决于服务器的配置,通常可以携带更大的数据量。另外,从缓存机制来看,GET 请求的结果通常会被浏览器缓存,而 POST 请求的结果一般不会被缓存,这也是两者的一个重要区别。
  • 优化后提示词:“用 3 句简单句介绍 HTTP 中 GET 和 POST 的区别,不使用复杂术语,每句不超过 25 字”
  • AI 优化后输出(约 70 字):1. GET 参数在 URL 里可见,POST 参数在请求体里。2. GET 参数长度有限制,POST 能传更大数据。3. GET 结果会被缓存,POST 一般不会。

4 提示词优化后的效果验证:3 个判断标准

优化完提示词后,需要验证效果,判断 AI 的输出是否达到了 “精简” 的要求。这里有 3 个简单的判断标准,大家可以直接套用。

4.1 标准一:核心信息是否完整

精简不等于缺失核心信息。判断输出是否合格,首先要看核心信息有没有遗漏。比如要求 AI 介绍 “Redis 的 3 个核心优势”,如果 AI 只介绍了 2 个,即使内容很短,也是不合格的。

比如,优化后的提示词是 “介绍 Redis 的 3 个核心优势:高性能、支持多数据结构、可持久化,每点 1 句话”,如果 AI 输出是 “1. Redis 性能高。2. 支持多种数据结构。3. 能持久化数据”,虽然内容简洁,但核心信息完整,符合要求;如果 AI 输出是 “1. Redis 性能高。2. 支持多种数据结构”,就缺失了 “可持久化” 这个核心信息,需要重新优化提示词。

4.2 标准二:是否有无关信息

合格的精简输出应该没有任何无关信息。比如要求 AI 写 “计算 1 到 100 累加和的 Python 代码”,如果 AI 输出的代码里包含了注释解释 Python 的循环语法,或者额外介绍了其他计算方法,就属于有无关信息,需要进一步优化提示词。

比如,优化后的提示词是 “写计算 1 到 100 累加和的 Python 代码,只给代码,不写注释”,如果 AI 输出是 “sum = 0\nfor i in range (1, 101):\n sum += i\nprint (sum)”,没有无关信息,符合要求;如果 AI 输出是 “# 用 for 循环计算 1 到 100 的和 \nsum = 0

sum = 0

for i in range (1, 101):

sum += i

print (sum)”,就包含了无关的注释,不符合要求,需要重新调整提示词,明确 “不写任何注释”。

4.3 标准三:是否符合长度和结构要求

除了核心信息和无关内容,还要检查输出是否符合提示词中设定的长度和结构要求。如果要求 “用 3 句话回答”,结果 AI 写了 5 句;或者要求 “分 4 步说明”,结果 AI 只分了 3 步,这些都属于不符合要求,需要进一步优化提示词。

比如,优化后的提示词是 “用 2 句话说明 Docker 容器的核心特点,每句不超过 20 字”,如果 AI 输出是 “1. Docker 容器轻量,启动速度快。2. 容器可独立运行,环境一致”,既符合句子数要求,也符合字数限制,是合格的;如果 AI 输出是 “1. Docker 容器相比虚拟机更轻量,启动速度更快。2. 容器可以在不同环境中独立运行,保证环境一致性。3. 还能方便地进行打包和部署”,不仅多了 1 句话,第一句和第二句的字数也超出限制,需要重新优化提示词,加强对句子数和字数的约束。

5 不同场景的提示词优化案例(覆盖 4 大常见场景)

前面介绍的策略和原则适用于大多数场景,但不同场景下的需求侧重点不同,提示词的优化方式也会略有差异。下面针对技术问答、代码生成、文案创作、数据整理 4 个常见场景,分别给出具体的优化案例,方便大家根据实际需求套用。

5.1 场景一:技术问答(以 “编程问题解答” 为例)

技术问答场景的核心需求是快速获取准确的解决方案,避免冗余的概念解释。优化提示词时,要明确 “问题核心” 和 “输出形式”,比如 “只给步骤”“只给原因”。

5.1.1 案例对比
  • 原始提示词:“我在使用 Python 写爬虫的时候,遇到了一个问题,就是请求网页的时候总是返回 403 错误,不知道为什么,你能帮我解决一下吗?”
  • AI 原始输出(约 200 字):在 Python 爬虫开发中,遇到 403 错误是很常见的情况,403 错误通常表示服务器理解了你的请求,但拒绝提供服务。造成这种错误的原因有很多,首先可能是服务器识别出了你是爬虫,而不是正常的浏览器访问,因为很多网站会通过检查请求头中的 User - Agent 字段来判断访问者的身份,如果 User - Agent 是 Python 的默认值,比如 “Python - requests/2.25.1”,服务器就会拒绝访问。其次,可能是你发送请求的频率太高,服务器认为你在恶意攻击,从而限制了你的访问。另外,有些网站需要登录才能访问,如果你没有登录就直接发送请求,也会返回 403 错误。还有可能是服务器的 IP 黑名单机制,你的 IP 地址被列入了黑名单,导致无法访问。针对这些原因,解决方案也不同,比如修改 User - Agent、降低请求频率、模拟登录、使用代理 IP 等。
  • 优化后提示词:“Python 爬虫请求网页返回 403 错误,分 3 点说明核心原因,每点不超过 30 字,不写解决方案”
  • AI 优化后输出(约 90 字):1. 请求头 User - Agent 为 Python 默认值,被服务器识别为爬虫。2. 请求频率过高,服务器判定为恶意访问。3. 未登录访问需登录页面,或 IP 被列入黑名单。

5.2 场景二:代码生成(以 “数据库操作代码” 为例)

代码生成场景的核心需求是获取可直接使用的代码,避免多余的代码解释和无关注释。优化提示词时,要明确 “代码功能”“编程语言”“是否需要注释”。

5.2.1 案例对比
  • 原始提示词:“写一个操作 MySQL 数据库的代码,实现查询用户表中所有年龄大于 18 岁的用户信息”
  • AI 原始输出(约 180 字):要实现查询 MySQL 数据库中用户表年龄大于 18 岁的用户信息,我们可以使用 Python 语言,借助 pymysql 库来操作数据库。首先,你需要确保已经安装了 pymysql 库,如果没有安装,可以使用 “pip install pymysql” 命令进行安装。接下来,代码的大致步骤是:第一步,导入 pymysql 库;第二步,建立与 MySQL 数据库的连接,需要传入主机地址、用户名、密码、数据库名称等参数;第三步,创建游标对象,用于执行 SQL 语句;第四步,编写 SQL 查询语句,即 “SELECT * FROM user WHERE age > 18”;第五步,执行 SQL 语句,并获取查询结果;第六步,关闭游标和数据库连接,避免资源浪费。下面是完整的代码:

import pymysql

建立数据库连接

conn = pymysql.connect(host='localhost', user='root', password='123456', db='test')

创建游标

cursor = conn.cursor()

编写 SQL 语句

sql = "SELECT * FROM user WHERE age > 18"

执行 SQL 语句

cursor.execute(sql)

获取查询结果

result = cursor.fetchall()

打印结果(可选)

for row in result:

print(row)

关闭游标和连接

cursor.close()

conn.close()

  • 优化后提示词:“用 Python + pymysql 写查询 MySQL 用户表(表名 user)年龄> 18 岁用户的代码,只给代码,无注释,无需安装说明”
  • AI 优化后输出(约 120 字):

import pymysql

conn = pymysql.connect (host='localhost', user='root', password='123456', db='test')

cursor = conn.cursor()

sql = "SELECT * FROM user WHERE age > 18"

cursor.execute(sql)

result = cursor.fetchall()

for row in result:

print(row)

cursor.close()

conn.close()

5.3 场景三:文案创作(以 “产品短标题” 为例)

文案创作场景中,短标题、短描述的需求很常见,核心是简洁、有吸引力,避免冗余的修饰。优化提示词时,要明确 “字数限制”“核心卖点”“目标人群”。

5.3.1 案例对比
  • 原始提示词:“为一款无线蓝牙耳机写一个产品短标题,这款耳机的特点是续航时间长、音质清晰、价格便宜”
  • AI 原始输出(约 80 字):这款无线蓝牙耳机是一款非常适合大众使用的产品,它不仅拥有超长的续航时间,让你不用担心电量问题,还能提供清晰的音质,让你享受优质的听觉体验,而且价格非常便宜,性价比很高。
  • 优化后提示词:“为无线蓝牙耳机写 2 个短标题,突出‘续航长、音质清、价格低’,每个标题不超过 15 字”
  • AI 优化后输出(约 30 字):1. 无线蓝牙耳机:长续航 + 清音质,价低!2. 续航长、音质清,平价无线蓝牙耳机。

5.4 场景四:数据整理(以 “Excel 数据分类” 为例)

数据整理场景的核心需求是获取清晰的整理规则或步骤,避免无关的操作说明。优化提示词时,要明确 “数据类型”“整理目标”“输出格式”。

5.4.1 案例对比
  • 原始提示词:“我有一个 Excel 表格,里面有很多客户信息,包括客户姓名、所在城市、消费金额,我想把这些客户按照消费金额分成‘高消费(>5000 元)’‘中消费(2000 - 5000 元)’‘低消费(<2000 元)’三类,该怎么操作?”
  • AI 原始输出(约 220 字):在 Excel 中对客户信息按消费金额分类是很常见的数据整理操作,首先你需要确保你的 Excel 表格数据是规范的,没有空值或错误值,比如消费金额列不能有文本类型的数据,否则会影响分类结果。接下来,有几种方法可以实现分类,其中最常用的是使用 “IF 函数”。首先,你需要在 Excel 表格中插入一列,作为分类结果列,比如列名为 “消费等级”。然后,在该列的第一个单元格(比如 D2)中输入 IF 函数,函数的逻辑是:如果消费金额(假设在 C 列,C2 单元格)大于 5000,就显示 “高消费”;如果在 2000 到 5000 之间,就显示 “中消费”;否则显示 “低消费”。除了 IF 函数,你还可以使用 “数据透视表” 或 “条件格式”,但 IF 函数是最直接、最简单的方法,适合新手使用。下面我会详细说明 IF 函数的操作步骤:
  1. 打开 Excel 表格,找到消费金额列(假设为 C 列);
  1. 在 D 列单元格输入 “消费等级”,作为列标题;
  1. 点击 D2 单元格,输入公式 “=IF (C2>5000,"高消费",IF (C2>=2000,"中消费","低消费"))”;
  1. 输入完成后按 Enter 键,然后下拉填充到所有行,即可完成分类。
  • 优化后提示词:“Excel 客户消费金额分类(高> 5000,中 2000 - 5000,低 < 2000),用 IF 函数分 3 步写操作,每步不超过 40 字”
  • AI 优化后输出(约 120 字):1. 插入 “消费等级” 列,确保消费金额列(如 C 列)无空值和文本数据。2. D2 单元格输入公式 “=IF (C2>5000,"高消费",IF (C2>=2000,"中消费","低消费"))”。3. 按 Enter 后下拉 D2 公式,填充所有行完成分类。

6 提示词优化的常见问题解答(5 个高频问题)

在实际优化提示词的过程中,很多人会遇到一些共性问题。下面针对 5 个高频问题进行解答,帮助大家避开误区,提高优化效率。

6.1 问题一:添加了长度限制,但 AI 还是超出字数怎么办?

如果添加了长度限制但 AI 仍超出字数,可能有两个原因:一是长度限制不够明确,二是提示词中包含了容易让 AI 扩展的内容。

解决方法:

  1. 进一步细化长度限制,比如把 “不超过 100 字” 改成 “严格控制在 80 - 100 字,超过即重新生成”;
  1. 去掉提示词中可能引发扩展的表述,比如把 “介绍一下 Redis 的优势,不超过 100 字” 改成 “列出 Redis 的 3 个优势,每点 20 字以内,总字数不超过 80 字”。

6.2 问题二:明确要求 “不写解释”,但 AI 还是加了原理说明怎么办?

这种情况通常是因为提示词中没有完全切断 AI 的 “解释倾向”,AI 可能会默认需要补充基础信息。

解决方法:

  1. 在提示词末尾添加强约束,比如 “只给结果,任何原理说明、补充解释都不写,否则无效”;
  1. 减少提示词中的背景信息,比如把 “我是新手,写一个简单的 Python 循环代码,不写解释” 改成 “写 Python 打印 1 - 10 的循环代码,只给代码,无解释”。

6.3 问题三:不同 AI 工具(比如 ChatGPT、豆包、文心一言)的提示词优化策略通用吗?

大部分核心策略(比如添加长度限制、明确结构、聚焦核心)是通用的,但不同 AI 工具的 “理解习惯” 略有差异,可能需要微调。

解决方法:

  1. 首次使用某款 AI 工具时,先测试基础策略,比如用 “用 2 句话介绍 HTTP” 测试其对长度限制的响应;
  1. 如果某款工具对 “禁止无关内容” 的响应较弱,可以加强约束表述,比如在 ChatGPT 中可能需要写 “绝对不包含任何额外解释,只输出指定内容”,而在其他工具中可能 “只给结果,不解释” 就足够。

6.4 问题四:提示词优化需要追求 “极致精简” 吗?

不需要。提示词优化的目标是 “让 AI 输出符合需求的精简内容”,而不是 “让提示词本身极致精简”。如果为了缩短提示词长度,导致需求表述不清晰,反而会让 AI 输出冗长或偏离需求的内容。

比如,把 “写一个计算 1 - 100 累加和的 Python 代码,只给代码,不写注释” 改成 “Python 1 - 100 累加代码”,虽然提示词更短,但 AI 可能会输出带注释或解释的代码,反而不符合需求。

6.5 问题五:对于复杂需求,如何避免提示词优化后输出 “过于简略”?

复杂需求(比如 “写一份接口测试方案框架”)需要平衡 “精简” 和 “完整”,避免优化后遗漏关键模块。

解决方法:

  1. 在提示词中明确 “必须包含的核心模块”,比如 “接口测试方案框架需包含‘测试范围、测试用例设计、测试环境、执行步骤’4 个模块,每个模块用 1 段话说明,每段不超过 50 字”;
  1. 分阶段优化,先让 AI 输出完整框架,再针对每个模块添加 “精简限制”,比如 “先输出接口测试方案的 4 个核心模块,再将每个模块的说明精简到 50 字以内”。

7 提示词优化工具推荐(3 款实用工具)

除了手动优化,还有一些工具可以辅助大家提高提示词优化效率,尤其是在批量处理或复杂需求场景下,能节省大量时间。

7.1 工具一:PromptBase(提示词模板库)

7.1.1 核心功能

提供大量针对不同场景的优质提示词模板,包括 “精简输出” 相关模板,比如 “技术问答精简提示模板”“代码生成精简提示模板” 等。

7.1.2 使用方式
  1. 访问 PromptBase 官网(需科学上网);
  1. 搜索关键词 “concise”(英文)或 “精简”(部分中文模板);
  1. 选择适合的模板,根据自身需求修改变量(比如将 “[产品名称]” 改成 “无线蓝牙耳机”)。
7.1.3 优势

模板经过大量测试,对 AI 工具的兼容性强,能快速生成符合需求的优化提示词,适合新手使用。

7.2 工具二:ChatGPT Prompt Tuner(浏览器插件)

7.2.1 核心功能

针对 ChatGPT 设计的提示词优化插件,能分析原始提示词的 “冗余点”,并给出优化建议,比如 “此处可添加长度限制”“建议去掉背景描述”。

7.2.2 使用方式
  1. 在 Chrome 或 Edge 浏览器安装该插件;
  1. 打开 ChatGPT 页面,输入原始提示词;
  1. 点击插件图标,插件会自动分析并生成优化后的提示词;
  1. 根据需求调整优化后的提示词,再发送给 ChatGPT。
7.2.3 优势

实时分析、一键优化,适合频繁使用 ChatGPT 的用户,能快速发现原始提示词的问题。

7.3 工具三:豆包提示词助手(内置功能)

7.3.1 核心功能

豆包 AI 内置的提示词优化功能,当输入提示词后,会自动检测 “是否存在输出冗长风险”,并给出优化建议,比如 “建议添加‘每点不超过 30 字’的限制”。

7.3.2 使用方式
  1. 打开豆包 AI 官网或 App;
  1. 输入原始提示词,比如 “介绍一下 Redis 的优势”;
  1. 下方会弹出 “提示词优化建议”,点击 “采纳建议” 即可生成优化后的提示词;
  1. 可手动修改建议中的参数,比如将 “3 点” 改成 “4 点”。
7.3.1 优势

无需额外安装工具,操作简单,对中文提示词的理解更精准,适合国内用户使用。

8 提示词优化实战练习(3 组不同难度练习)

理论知识和案例参考后,实战练习能帮助大家更好地掌握精简提示策略。下面设计 3 组不同难度的练习,从基础到进阶,大家可以先尝试自己优化,再对比参考优化方案,检验学习效果。

8.1 基础练习:技术概念解释(适合新手)

8.1.1 练习任务

原始提示词:“解释一下什么是 RESTful API,它有什么特点”

要求:优化提示词,让 AI 输出精简内容,需满足 “用 3 句话解释概念,分 2 点说明特点,每句 / 每点不超过 25 字”

8.1.2 参考优化方案

优化后提示词:“用 3 句话解释 RESTful API 概念(每句≤25 字),分 2 点说特点(每点≤25 字)”

8.1.3 AI 预期输出(参考)
  1. RESTful API 是基于 REST 原则设计的接口规范。2. 它用 HTTP 方法(GET/POST 等)操作资源。3. 资源通过 URL 标识,返回 JSON 等格式数据。特点:1. 无状态,每次请求独立不依赖上下文。2. 可缓存,支持客户端缓存响应数据。

8.2 进阶练习:代码功能修改(适合有一定基础者)

8.2.1 练习任务

原始提示词:“我有一段 Python 代码,是计算两个数相乘的,现在想改成计算两个数相除,还要处理除数为 0 的情况,你能帮我改一下吗?”

要求:优化提示词,让 AI 只输出修改后的代码,无注释、无代码解释,代码需包含除数为 0 的异常处理。

8.2.2 参考优化方案

优化后提示词:“将 Python 两数相乘代码改成两数相除,含除数为 0 异常处理,只给代码,无注释无解释”

8.2.3 AI 预期输出(参考)

def divide (a, b):

try:

return a /b

except ZeroDivisionError:

return "除数不能为 0"

示例调用(可选,若提示词未禁止可保留)

print(divide(10, 2))

print(divide(8, 0))

8.3 高阶练习:复杂文案创作(适合熟练使用者)

8.3.1 练习任务

原始提示词:“为一款智能手表写产品介绍,这款手表有心率监测、睡眠分析、运动模式、长续航这几个功能,目标用户是上班族,需要写得吸引人一些”

要求:优化提示词,让 AI 输出 2 段介绍文案,每段不超过 80 字,突出 “上班族适用”,不包含无关功能描述。

8.3.2 参考优化方案

优化后提示词:“为智能手表写 2 段上班族适用的介绍文案,突出心率监测、睡眠分析、运动模式、长续航,每段≤80 字,无无关功能描述”

8.3.3 AI 预期输出(参考)
  1. 上班族专属智能手表!实时心率监测守护工作健康,睡眠分析帮你改善作息,多样运动模式适配通勤间隙锻炼,长续航告别频繁充电烦恼。2. 针对上班族设计的智能手表:上班时监测心率防疲劳,睡前分析睡眠质量,运动模式满足碎片化健身,长续航让你无需每天充电。

9 提示词优化的未来趋势展望

随着 AI 技术的不断发展,提示词优化也会呈现新的趋势,了解这些趋势能帮助大家更好地适应未来的 AI 使用场景,提前做好准备。

9.1 趋势一:提示词自动化优化工具更智能

目前的提示词优化工具多以模板、手动调整建议为主,未来会出现更智能的自动化工具。这类工具能通过分析用户的历史需求、AI 输出反馈,自动生成最优提示词,甚至无需用户手动输入需求,只需通过语音描述或上传需求文档,工具就能精准提取核心需求,生成符合 “精简输出” 要求的提示词。

比如,用户上传一份 “接口测试需求文档”,工具能自动识别 “需要输出接口测试用例框架” 的核心需求,自动生成 “接口测试用例框架含‘用例编号、测试步骤、预期结果’,分 3 点说明,每点≤50 字” 的优化提示词,大幅减少用户操作步骤。

9.2 趋势二:AI 模型自带 “精简输出” 默认模式

现在需要用户手动添加 “精简限制” 才能让 AI 输出简洁内容,未来的 AI 模型可能会自带 “精简输出” 默认模式。当用户未明确要求输出长度时,AI 会根据场景自动判断需求,优先输出精简内容,避免冗长。

比如,用户在代码生成场景输入 “写一个 Python 读取 Excel 数据的代码”,AI 会默认输出无注释、无多余解释的核心代码;在技术问答场景输入 “为什么 Java 要区分值传递和引用传递”,AI 会默认用 3 - 5 句核心句子回答,无需用户额外添加长度限制。

9.3 趋势三:行业专属提示词优化标准出现

不同行业的 AI 使用需求差异较大,比如互联网行业侧重代码生成、文案创作,医疗行业侧重病例分析、医学知识问答,教育行业侧重知识点讲解、习题解答。未来会针对不同行业形成专属的提示词优化标准,明确各行业 “精简输出” 的核心要求、常用表述方式。

比如,医疗行业的提示词优化标准会要求 “医学术语准确,输出内容符合医疗规范,核心信息(如病因、治疗方案)优先,无多余医学背景介绍”;教育行业的标准会要求 “知识点表述简洁易懂,符合学生认知水平,无超纲内容,步骤清晰”。

9.4 趋势四:提示词优化与多模态 AI 结合

随着多模态 AI(文字、图片、音频、视频结合)的发展,提示词优化不再局限于文字输出的精简,还会扩展到图片生成、视频脚本生成等场景。比如,在图片生成场景,提示词优化会要求 “明确图片风格、元素、尺寸,避免多余元素生成”;在视频脚本生成场景,会要求 “脚本分镜清晰,每段台词不超过 15 字,无冗余情节描述”。

比如,优化后的图片生成提示词:“生成一张上班族使用智能手表的图片,风格写实,背景为办公室,无多余人物和物品,尺寸 1080×1920”;优化后的视频脚本提示词:“智能手表宣传视频 15 秒脚本,分 3 个镜头,每镜头台词≤15 字,突出长续航功能”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值