【人工智能】提示词优化:用“结构化列表”提升提示词的可读性

一、引言

在人工智能飞速发展的当下,与 AI 的交互已成为我们工作和生活中的常见操作。不管是让 AI 生成一段文案、绘制一幅图像,还是解答一个复杂的问题,提示词都发挥着不可或缺的作用,它是我们与 AI 沟通的关键工具,直接决定了 AI 输出结果的质量和相关性。

在日常使用中,我们常常会遇到这样的情况:简单、随意的提示词,往往只能得到 AI 泛泛而谈、甚至偏离需求的回复。比如,当我们向 AI 提问 “写一篇关于旅游的文章” 时,AI 可能会给出一篇中规中矩但缺乏针对性的文章,因为它并不清楚我们期望的旅游目的地、文章风格、受众群体等关键信息。但如果我们将提示词优化为 “请为打算去云南旅游的新手游客写一篇攻略,内容涵盖热门景点、特色美食和住宿建议,语言风格轻松活泼,适合在社交媒体上分享”,AI 就能更准确地理解我们的需求,生成更符合期望的内容。

随着 AI 应用场景的日益丰富和任务复杂度的不断提高,如何让提示词更清晰、准确地传达我们的意图,成为了亟待解决的问题。这时,结构化列表的优势就凸显出来了。通过将提示词中的关键信息,如任务目标、背景信息、具体要求等,以结构化列表的形式呈现,我们能使提示词的逻辑更加清晰,层次更加分明。这不仅有助于我们自己梳理思路,确保没有遗漏重要信息,也能让 AI 更轻松地理解我们的需求,从而生成更优质、更贴合需求的结果。

接下来,本文将深入探讨如何运用结构化列表提升提示词的可读性,从基本概念、构建方法到实际案例分析,全方位为大家呈现结构化列表在提示词优化中的重要作用和应用技巧。

二、认识提示词

2.1 提示词的定义与作用

提示词,英文为 “Prompt”,是我们与 AI 模型交流的关键媒介,本质上是一种输入指令 。当我们使用 AI 进行创作、获取信息或解决问题时,输入的文本内容就是提示词。比如,在使用 AI 绘画工具时,输入 “一幅美丽的星空下的海边城堡”,这就是一个提示词,AI 会依据这个提示词来生成相应的图像。又比如,向语言模型提问 “介绍一下中国的四大发明”,同样是通过提示词来触发 AI 的回答。

提示词的作用不容小觑,它直接决定了 AI 输出结果的质量和方向。优质的提示词就像精准的导航,引导 AI 朝着我们期望的目标前进,让 AI 理解我们的意图,从而生成符合需求的内容。相反,若提示词模糊不清、缺乏关键信息,AI 就如同在迷雾中航行的船只,难以把握正确的方向,可能会给出泛泛而谈、偏离主题的回答。以写一篇产品推广文案为例,如果只是简单地告诉 AI “写一篇推广文案”,AI 可能不知道推广的产品是什么、目标受众是谁、产品的独特卖点有哪些,最终生成的文案可能毫无针对性和吸引力。但如果将提示词细化为 “为一款新上市的智能降噪耳机写一篇推广文案,目标受众是经常通勤的上班族,突出耳机的降噪效果、轻便设计和长续航能力,文案风格简洁明了,具有感染力”,AI 就能根据这些详细信息,创作出更贴合需求的推广文案。

2.2 优质提示词的特点

  1. 清晰明确:避免使用模糊、模棱两可的词汇,让 AI 能准确理解任务要求。例如,“写一篇关于水果的文章” 就比较模糊,AI 不清楚重点是介绍水果的种类、营养价值,还是其他方面。而 “写一篇介绍苹果营养价值和挑选方法的科普文章” 则清晰得多,AI 能明确创作方向。
  1. 具体详细:包含足够的细节信息,使 AI 生成的内容更具针对性和实用性。比如,在要求 AI 设计一个网站页面时,不能只说 “设计一个网站页面”,而应具体说明 “为一家在线书店设计首页,页面布局要简洁美观,包含新书推荐、畅销榜、分类导航和用户登录入口等板块,配色以蓝色和白色为主,风格要符合书籍文化氛围” 。这样详细的提示词能让 AI 设计出更符合期望的页面。
  1. 完整全面:涵盖任务的各个关键要素,不遗漏重要信息。以策划一场活动为例,优质的提示词应包括活动主题、时间、地点、参与人群、活动流程、预算限制等方面,如 “策划一场在周末举行的亲子户外运动会,地点在市中心公园,面向有小孩的家庭,活动流程包括开场热身、亲子游戏比赛、休息互动和颁奖环节,预算控制在 5000 元以内” 。完整的提示词能确保 AI 生成全面、可行的活动策划方案。
  1. 逻辑连贯:各个部分之间的逻辑关系清晰,便于 AI 组织内容。比如,在撰写一篇议论文时,提示词可以按照 “提出问题 - 分析问题 - 解决问题” 的逻辑结构来表述,如 “以‘互联网对青少年的影响’为主题写一篇议论文,先阐述互联网给青少年带来的机遇和挑战,然后分析产生这些影响的原因,最后提出应对策略” 。这样的提示词能引导 AI 写出逻辑严谨的议论文。
  1. 目标导向:明确输出结果的目标和用途,让 AI 的生成内容更符合实际需求。例如,若要生成一篇用于社交媒体推广的文案,提示词可以是 “写一篇吸引人的社交媒体文案,用于推广一款新的健身课程,要激发用户的兴趣,引导他们报名参加,文案字数控制在 200 字以内,适合在微信朋友圈发布” 。目标导向明确的提示词能让 AI 创作出更具针对性和效果的推广文案。

三、为什么要用结构化列表

3.1 非结构化提示词的痛点

在实际与 AI 交互的过程中,非结构化提示词常常暴露出诸多问题,给我们获取准确、满意的结果带来阻碍 。以撰写一篇产品推广文案为例,若给出的非结构化提示词是:“帮我写一篇推广我们公司新出的智能手表的文案,要突出它的优点,吸引人来购买。” 这样的提示词看似明确,但实际上存在不少模糊之处。AI 可能并不清楚智能手表的具体优点是什么,是续航能力强、功能丰富,还是设计时尚?也不了解目标受众是谁,是追求科技感的年轻人,还是注重健康监测的中老年人?由于缺乏这些关键信息,AI 生成的文案可能泛泛而谈,无法精准地吸引潜在客户。

再比如,当我们向 AI 询问:“给我推荐一些旅游景点,要风景好、人少、交通方便的。” 这个提示词同样缺乏明确的指向。不同人对 “风景好” 的定义可能大相径庭,“人少” 是相对的概念,没有具体的量化标准,“交通方便” 也没有说明出发地等关键信息。AI 在理解这样的提示词时,会面临很大的困难,可能给出的推荐并不符合我们的预期 。

在处理复杂任务时,非结构化提示词的逻辑混乱问题也会更加凸显。例如,要求 AI 制定一个项目策划方案,非结构化提示词可能是:“做一个关于新产品上线的项目策划,要包括时间安排、人员分工、市场推广等方面,注意成本控制,还要考虑可能遇到的问题及解决方案。” 这样的提示词中,各项要求杂乱无章,没有清晰的层次和逻辑顺序,AI 在生成策划方案时,可能会出现内容遗漏、重点不突出等问题。

3.2 结构化列表带来的改变

3.2.1 提高可读性

结构化列表通过清晰的层次和有序的排列,使提示词的内容一目了然 。以撰写一篇科技产品评测文章为例,使用结构化列表的提示词可以是:

  • 评测产品:[产品名称] 智能音箱
  • 评测项目
    • 音质表现:包括音量大小、音色清晰度、低音效果等方面的测试与评价。
    • 功能体验:如语音唤醒功能的灵敏度、智能交互功能的实用性、连接稳定性等。
    • 外观设计:对音箱的整体造型、材质质感、尺寸便携性等进行描述和分析。
  • 评测目的:为消费者提供全面、客观的产品信息,帮助他们做出购买决策。

这样的提示词,将复杂的评测任务分解为具体的项目,每个项目下又有明确的子项,无论是我们自己检查,还是 AI 理解执行,都更加轻松便捷。相比之下,非结构化提示词如 “写一篇关于 [产品名称] 智能音箱的评测文章,要写音质、功能、外观,还要给消费者提供有用信息”,显得混乱无序,容易让人遗漏重要内容。

3.2.2 增强准确性

结构化列表能够明确各个部分的关系和重要性,让模型更准确地把握任务需求,从而减少误解 。以制定旅游攻略为例,结构化提示词可以是:

  • 旅游目的地:[城市名称]
  • 旅行时间:[具体日期区间]
  • 游客偏好
    • 景点类型:历史文化景点、自然风光景点、现代娱乐景点等。
    • 美食偏好:当地特色小吃、正餐口味偏好(如辣、甜等)。
    • 住宿要求:酒店星级、价格范围、位置偏好(靠近景点、市中心等)。
  • 行程安排要求
    • 每日行程:明确每天的行程安排,包括景点游览顺序、用餐地点推荐、休息时间等。
    • 交通方式:推荐合适的市内交通方式,如地铁、公交、打车等,以及前往周边景点的交通建议。

通过这样详细的结构化列表,AI 能够清楚地了解用户的各项需求,生成的旅游攻略也会更加符合用户的期望。如果使用非结构化提示词,如 “帮我做个 [城市名称] 的旅游攻略,有景点、美食和住宿推荐就行”,AI 可能无法准确判断用户对景点、美食和住宿的具体偏好,导致攻略的准确性大打折扣 。

3.2.3 方便维护和复用

当需求发生变化时,结构化提示词的修改更加容易。例如,在上述旅游攻略的提示词中,如果用户临时改变旅行时间或者对住宿要求有了新的调整,只需要在相应的部分进行修改即可,不会影响其他部分的内容。而对于非结构化提示词,修改起来可能需要在一大段文字中寻找相关内容,容易出现遗漏或错误 。

同时,结构化提示词具有良好的复用性。对于类似的任务,我们可以在已有结构化提示词的基础上进行修改和完善,而不必每次都重新编写。比如,为不同城市制定旅游攻略时,我们可以复用上述结构化提示词的框架,只需要更换旅游目的地、游客偏好等具体内容,就能快速生成新的提示词,提高工作效率。

四、常见的结构化格式

在提升提示词可读性的过程中,选择合适的结构化格式至关重要。不同的结构化格式具有各自独特的特点和适用场景,能够满足我们在不同任务和需求下对提示词的优化要求。下面将详细介绍三种常见的结构化格式:Markdown、JSON 和 XML ,分析它们的语法规则、优势以及实际应用案例,帮助大家更好地理解和运用这些格式来优化提示词。

4.1 Markdown

4.1.1 Markdown 语法基础

Markdown 是一种轻量级标记语言,凭借其简洁直观的语法,在撰写结构化提示词时广受欢迎,是入门的首选。它使用一系列简单的符号来表示文本的结构和格式,例如:

  • 标题:使用 “#” 表示,“#” 的数量对应标题级别,“# 一级标题”、“## 二级标题”、“### 三级标题” 以此类推,最多支持六级标题 。通过标题可以清晰地划分提示词的不同部分,突出重点内容。
  • 列表:有序列表使用数字加 “.” 表示,如 “1. 第一项”、“2. 第二项”;无序列表使用 “-” 或 “” 表示,如 “- 列表项 1”、“ 列表项 2” 。列表常用于罗列任务步骤、要点等,使信息呈现更有条理。
  • 加粗和倾斜:用 “文本” 表示加粗,“文本” 表示倾斜,能够强调提示词中的关键信息,引起注意。
  • 代码块:使用三个反引号()包裹代码内容,并可在反引号后指定语言类型,如“python” 表示 Python 代码块 。当提示词中包含代码示例或需要模型处理代码相关任务时,代码块能准确呈现代码结构,避免格式混乱。

链接和图片:链接使用 “链接文本” 的形式,如 “CSDN 官网”;图片使用 “

图片描述

” 的形式插入 。在提示词中,链接和图片可用于提供相关参考资料或示例,增强信息的丰富性。

4.1.2 案例展示

以要求 AI 撰写一篇科技产品评测文章为例,对比非结构化提示词和 Markdown 格式的结构化提示词。

  • 非结构化提示词:“帮我写一篇关于 [产品名称] 智能手表的评测文章,要包含外观、功能、性能、续航等方面的内容,分析要全面客观,语言通俗易懂,字数在 1000 字左右。”
  • Markdown 格式结构化提示词
 

# 任务:撰写[产品名称]智能手表评测文章

## 一、产品概述

简单介绍[产品名称]智能手表的基本信息,如品牌、型号、定位等。

## 二、评测维度

### (一)外观设计

1. 整体造型与风格,描述手表的形状、表盘大小、表带材质和设计等。

2. 细节工艺,包括表盘的显示效果、按键手感、表身材质质感等。

### (二)功能体验

1. 基础功能,如时间显示、闹钟、日历等是否准确易用。

2. 特色功能,如健康监测功能(心率、睡眠监测等)的准确性和实用性,运动模式的丰富度和记录的详细程度,智能语音助手的交互体验等。

### (三)性能表现

1. 系统流畅度,操作界面切换是否顺滑,有无卡顿现象。

2. 响应速度,如点击应用、接收通知等的反应时间。

3. 兼容性,与手机等设备的连接稳定性和兼容性。

### (四)续航能力

1. 正常使用场景下的续航时长,记录每天使用的功能和时长,统计续航天数。

2. 充电速度,从低电量到充满电所需的时间。

## 三、评测要求

1. 分析要全面客观,既阐述优点,也指出存在的不足。

2. 语言通俗易懂,避免使用过多专业术语,让普通消费者能够轻松理解。

3. 字数控制在1000字左右,重点突出,逻辑清晰。

通过 Markdown 格式的结构化提示词,任务被清晰地分解为多个部分,每个部分的内容和要求都一目了然。AI 能够更准确地理解任务需求,按照各个维度有条理地进行评测文章的撰写,生成的文章质量更高,更符合预期。相比之下,非结构化提示词较为笼统,AI 在理解和执行时可能会出现重点不突出、内容遗漏等问题 。

4.2 JSON

4.2.1 JSON 结构解析

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,基于 JavaScript 的对象字面量语法,常用于存储和传输结构化数据 。它的基本结构由键值对组成,使用大括号 “{}” 表示对象,方括号 “[]” 表示数组。例如:

 

{

"product": "智能手表",

"brand": "[品牌名称]",

"model": "[具体型号]",

"evaluationDimensions": [

{

"dimension": "外观设计",

"details": [

"整体造型简约时尚,圆形表盘搭配不锈钢表身,质感出色。",

"表带采用亲肤的硅胶材质,佩戴舒适,且有多种调节尺寸。"

]

},

{

"dimension": "功能体验",

"details": [

"健康监测功能精准,能实时追踪心率、睡眠质量等数据。",

"运动模式丰富,涵盖跑步、游泳、登山等常见运动,数据记录详细。"

]

},

{

"dimension": "性能表现",

"details": [

"搭载高性能芯片,系统运行流畅,操作响应迅速。",

"蓝牙连接稳定,与手机配对方便,数据同步及时。"

]

},

{

"dimension": "续航能力",

"details": [

"正常使用情况下,续航可达7天,满足日常需求。",

"支持快充功能,30分钟可充电50%,充电速度较快。"

]

}

],

"evaluationRequirements": {

"objectivity": "全面客观分析,如实呈现产品优缺点。",

"language": "语言简洁明了,易于大众理解。",

"wordCount": "文章字数控制在1000字左右。"

}

}

在这个 JSON 结构中,“product”“brand”“model” 等是键,对应的值描述了产品的基本信息;“evaluationDimensions” 是一个数组,每个元素是一个对象,包含 “dimension”(评测维度)和 “details”(具体细节)两个键值对,用于详细说明各个评测维度的内容;“evaluationRequirements” 是一个对象,包含 “objectivity”“language”“wordCount” 等键值对,规定了评测要求 。

4.2.2 适用场景

JSON 格式在需要与外部工具交互时具有显著优势。当我们使用 AI 生成的内容需要直接被其他系统或程序读取和处理时,JSON 的结构化和标准化特性使其能够方便地进行数据交换。例如,在开发一个智能产品评测平台时,AI 生成的评测内容以 JSON 格式输出后,可以直接被平台的后端程序解析,存储到数据库中,或者用于生成前端展示的页面 。

此外,JSON 格式也适用于需要对提示词进行严格的结构化定义和验证的场景。通过定义 JSON Schema,可以明确规定提示词的结构和数据类型,确保输入的提示词符合特定的规范。这在一些对数据准确性和一致性要求较高的企业应用中尤为重要,能够有效减少因提示词格式错误导致的问题 。

4.3 XML

4.3.1 XML 标签与结构

XML(Extensible Markup Language)即可扩展标记语言,是一种用于传输和存储数据的标记语言,具有自描述性和层次化结构 。XML 使用标签来定义数据的结构和含义,标签由尖括号包围,成对出现,如 “<标签名> 内容 </ 标签名 >” 。例如:

 

<productEvaluation>

<product>

<name>智能手表</name>

<brand>[品牌名称]</brand>

<model>[具体型号]</model>

</product>

<evaluationDimensions>

<dimension>

<name>外观设计</name>

<details>

<detail>整体造型简约时尚,圆形表盘搭配不锈钢表身,质感出色。</detail>

<detail>表带采用亲肤的硅胶材质,佩戴舒适,且有多种调节尺寸。</detail>

</details>

</dimension>

<dimension>

<name>功能体验</name>

<details>

<detail>健康监测功能精准,能实时追踪心率、睡眠质量等数据。</detail>

<detail>运动模式丰富,涵盖跑步、游泳、登山等常见运动,数据记录详细。</detail>

</details>

</dimension>

<dimension>

<name>性能表现</name>

<details>

<detail>搭载高性能芯片,系统运行流畅,操作响应迅速。</detail>

<detail>蓝牙连接稳定,与手机配对方便,数据同步及时。</detail>

</details>

</dimension>

<dimension>

<name>续航能力</name>

<details>

<detail>正常使用情况下,续航可达7天,满足日常需求。</detail>

<detail>支持快充功能,30分钟可充电50%,充电速度较快。</detail>

</details>

</dimension>

</evaluationDimensions>

<evaluationRequirements>

<objectivity>全面客观分析,如实呈现产品优缺点。</objectivity>

<language>语言简洁明了,易于大众理解。</language>

<wordCount>文章字数控制在1000字左右。</wordCount>

</evaluationRequirements>

</productEvaluation>

在这个 XML 结构中,“productEvaluation” 是根标签,包含了 “product”“evaluationDimensions”“evaluationRequirements” 等子标签,每个子标签又包含各自的子标签和内容,形成了清晰的层次结构 。通过这种层次化的标签结构,XML 能够准确地表达数据之间的关系和语义 。

4.3.2 独特优势

XML 在语义表达和复杂信息组织方面具有明显长处。由于其标签具有自描述性,即使对于不熟悉数据内容的人或程序,也能通过标签名称快速理解数据的含义 。例如,在上述例子中,“name”“brand”“model” 等标签明确表示了其所包含内容的意义,“evaluationDimensions” 标签下的 “dimension” 标签进一步细分了评测维度,使得整个数据结构的语义非常清晰 。

对于复杂的提示词,XML 的嵌套结构能够完美地组织和呈现多个层次的信息。当需要描述具有复杂逻辑关系的任务或包含大量细节的信息时,XML 可以通过合理的标签嵌套,将这些信息有条不紊地展示出来,便于 AI 理解和处理 。在一些对数据结构和语义要求严格的领域,如文档处理、数据交换标准制定等,XML 被广泛应用于构建结构化提示词 。

五、构建结构化提示词的步骤

5.1 明确任务目标

在构建结构化提示词时,明确任务目标是首要且关键的步骤,如同为航船确定目的地。清晰定义任务目标能让我们在与 AI 交互时有的放矢,使 AI 准确理解我们的意图,从而生成符合需求的内容。

以策划一场线上营销活动为例,如果目标不明确,给出的提示词可能只是简单的 “策划一个线上营销活动”。这样模糊的表述,AI 无法得知活动针对的产品是什么、目标受众是谁、期望达成的效果如何,最终生成的策划方案大概率无法满足实际需求。

而明确任务目标后的提示词则会大不相同,比如:“为新推出的智能健康手环策划一场面向 25 - 40 岁上班族的线上营销活动,活动目标是在活动开始后的一个月内,将产品的知名度提升 30%,并吸引至少 5000 名潜在客户注册了解产品信息 。” 在这个提示词中,明确了活动的对象(25 - 40 岁上班族)、针对的产品(新推出的智能健康手环)以及期望达成的量化目标(一个月内提升产品知名度 30%,吸引至少 5000 名潜在客户注册) 。

通过这样清晰明确的任务目标设定,AI 能够围绕核心需求展开策划,从活动形式的选择(如直播介绍、社交媒体推广等)、内容的设计(突出智能健康手环适合上班族的功能,如久坐提醒、睡眠监测等)到推广渠道的确定(选择上班族常用的社交平台和职场类 APP 等),都能更具针对性,生成的策划方案也更贴合实际业务需求 。

5.2 拆解任务步骤

将复杂任务拆分成多个小步骤,是构建结构化提示词的重要环节,有助于降低任务难度,让 AI 更有条理地执行任务。

以撰写一篇学术论文为例,这是一个复杂的任务,如果直接要求 AI “写一篇关于人工智能在医疗领域应用的学术论文”,AI 可能会感到无从下手,或者生成的论文结构混乱、内容不完整。

我们可以将这个任务进行如下拆解:

  1. 确定论文大纲
  • 引言:阐述人工智能在医疗领域应用的研究背景和意义,介绍研究目的和主要内容。
  • 研究现状:综述国内外人工智能在医疗领域的应用现状,包括已取得的成果和存在的问题。
  • 关键技术:详细介绍人工智能在医疗应用中的关键技术,如机器学习算法、大数据分析等。
  • 应用案例分析:列举实际的医疗案例,分析人工智能技术如何在其中发挥作用,取得了怎样的效果。
  • 挑战与展望:探讨人工智能在医疗领域应用面临的挑战,如数据安全、伦理问题等,并对未来的发展趋势进行展望。
  • 结论:总结论文的主要观点和研究成果,强调人工智能在医疗领域应用的重要性和前景。
  1. 收集相关资料
  • 搜索学术数据库,如知网、万方等,获取相关的学术文献。
  • 查阅专业书籍,了解人工智能和医疗领域的基础知识和前沿研究。
  • 关注行业动态,收集最新的案例和数据,确保论文内容的时效性。
  1. 撰写论文各部分内容
  • 根据大纲和收集的资料,撰写引言部分,突出研究的价值和必要性。
  • 对研究现状进行梳理和分析,撰写研究现状部分,客观呈现当前的研究水平。
  • 详细阐述关键技术,撰写关键技术部分,确保专业性和准确性。
  • 结合实际案例,深入分析人工智能的应用效果,撰写应用案例分析部分。
  • 针对面临的挑战进行探讨,提出自己的见解和思考,撰写挑战与展望部分。
  • 总结全文,撰写结论部分,使论文逻辑完整。
  1. 检查与修订
  • 检查论文的内容完整性,确保各个部分都有充分的论述。
  • 核对引用的文献和数据,保证准确性和可靠性。
  • 检查语言表达是否流畅、逻辑是否连贯,对论文进行润色和修订。

通过这样的任务拆解,将撰写学术论文这一复杂任务细化为多个具体的、可操作的小步骤,每个步骤都有明确的目标和内容 。AI 在执行时能够循序渐进,先完成大纲的生成,再依据大纲收集资料,然后按照资料和大纲撰写各部分内容,最后进行检查修订,从而生成结构严谨、内容丰富的学术论文 。

5.3 组织内容结构

在明确任务目标和拆解任务步骤后,需要选择合适的结构化格式来组织内容,使提示词更清晰、有条理,便于 AI 理解和处理 。不同的任务和需求适合不同的结构化格式,以下是几种常见格式的应用示例:

  • Markdown 格式:在要求 AI 撰写一篇技术博客文章时,可使用 Markdown 格式组织提示词。
 

# 任务:撰写关于Python数据分析的技术博客文章

## 一、文章概述

介绍文章主要探讨Python在数据分析领域的应用,适合有一定编程基础的读者。

## 二、文章结构

### (一)引言

1. 简述数据分析在当今社会的重要性。

2. 引出Python作为数据分析工具的优势。

### (二)Python数据分析基础

1. 介绍Python中常用的数据分析库,如Pandas、Numpy、Matplotlib等。

2. 讲解如何安装和导入这些库。

### (三)数据读取与清洗

1. 演示使用Pandas读取不同格式的数据文件,如CSV、Excel等。

2. 阐述数据清洗的常见操作,如处理缺失值、重复值、异常值等。

### (四)数据分析实战

1. 给出一个实际的数据分析案例,如销售数据统计分析。

2. 详细展示使用Python进行数据计算、统计分析的过程和代码实现。

### (五)数据可视化

1. 介绍如何使用Matplotlib和Seaborn进行数据可视化。

2. 展示如何将分析结果以图表形式呈现,如柱状图、折线图、饼图等。

### (六)总结与展望

1. 总结Python数据分析的主要内容和关键步骤。

2. 对Python在数据分析领域的未来发展进行简单展望。

## 三、写作要求

1. 语言通俗易懂,避免过多专业术语,多使用示例和代码片段辅助说明。

2. 代码要有详细注释,便于读者理解。

3. 文章字数控制在2000字左右。

通过 Markdown 的标题、列表等语法,清晰地划分了文章的各个部分和层次,AI 能够按照这些结构有序地生成内容 。

  • JSON 格式:当需要 AI 生成的数据能被程序方便解析和处理时,可采用 JSON 格式。例如,要求 AI 生成一份旅游景点信息清单:
 

{

"task": "生成一份热门旅游景点信息清单",

"destination": "中国",

"numOfScenicSpots": 5,

"scenicSpots": [

{

"name": "故宫博物院",

"location": "北京",

"introduction": "中国明清两代的皇家宫殿,世界文化遗产,拥有丰富的历史文物和建筑景观。",

"mainAttractions": ["太和殿", "中和殿", "保和殿", "乾清宫", "坤宁宫"],

"openingHours": "8:30 - 17:00(旺季);8:30 - 16:30(淡季)",

"ticketPrice": "60元(旺季);40元(淡季)"

},

{

"name": "张家界国家森林公园",

"location": "湖南张家界",

"introduction": "以奇特的石英砂岩峰林地貌著称,拥有三千奇峰、八百秀水,是世界自然遗产。",

"mainAttractions": ["袁家界", "金鞭溪", "黄石寨", "天子山"],

"openingHours": "7:00 - 18:00",

"ticketPrice": "228元"

},

// 其他景点信息类似结构

]

}

JSON 格式以键值对和数组的形式,清晰地组织了旅游景点的各项信息,方便程序读取和处理,也便于 AI 按照指定的结构生成准确的内容 。

  • XML 格式:在处理复杂的文档结构或对语义表达要求较高的任务时,XML 格式能发挥其优势。比如,要求 AI 生成一份图书目录结构:
 

<bookCatalog>

<book>

<title>Python从入门到精通</title>

<author>张三</author>

<publisher>XX出版社</publisher>

<publicationDate>2024-01-01</publicationDate>

<chapters>

<chapter>

<chapterNumber>1</chapterNumber>

<chapterTitle>Python基础入门</chapterTitle>

<sections>

<section>

<sectionNumber>1.1</sectionNumber>

<sectionTitle>Python简介</sectionTitle>

</section>

<section>

<sectionNumber>1.2</sectionNumber>

<sectionTitle>环境搭建</sectionTitle>

</section>

<!-- 其他章节和部分类似结构 -->

</sections>

</chapter>

</chapters>

</book>

</bookCatalog>

XML 的标签结构层次分明,能够准确表达图书目录的层级关系和语义信息,AI 在生成内容时可以更好地遵循这种结构,确保目录的准确性和完整性 。

5.4 检查与优化

完成提示词的构建后,检查与优化是不可或缺的环节,它能确保提示词的逻辑严谨、准确无误,从而提高 AI 输出结果的质量 。

  • 检查逻辑连贯性:仔细审视提示词中各个部分之间的逻辑关系是否合理、连贯。例如,在一个项目策划提示词中,任务步骤的安排是否符合实际工作流程,先进行市场调研,再制定营销策略,最后开展推广活动,这样的顺序是合理的。如果出现先推广活动,再进行市场调研的不合理顺序,就需要及时调整 。
  • 核对准确性:检查提示词中的信息是否准确,包括数据、事实、术语等。比如,在要求 AI 撰写一篇关于科技产品的评测文章时,产品的参数、功能描述等必须准确无误。若将产品的内存容量写错,AI 生成的评测内容也会出现错误 。
  • 优化表述:精简提示词的语言,去除冗余信息,使表达更加简洁明了。同时,确保使用的词汇通俗易懂,避免过于生僻或专业的词汇,以免 AI 理解困难。例如,将 “采用了前沿的人工智能算法” 改为 “使用了先进的人工智能算法”,表达更简洁易懂 。
  • 测试与调整:将构建好的提示词输入 AI 进行测试,观察输出结果是否符合预期。如果 AI 生成的内容存在问题,如重点不突出、内容缺失、逻辑混乱等,要根据输出结果分析提示词中存在的不足,针对性地进行调整和优化 。比如,在要求 AI 生成一篇故事时,若故事的情节平淡、缺乏吸引力,可在提示词中增加对故事情节、角色特点等方面的详细描述,引导 AI 生成更精彩的故事 。通过不断地测试和调整,使提示词更加完善,从而获得更满意的 AI 输出结果 。

六、结构化列表在不同场景的应用

6.1 文本生成

在文本生成领域,结构化列表的应用极为广泛,能显著提升生成内容的质量和针对性。以撰写一篇旅游攻略为例,若采用非结构化提示词,如 “帮我写一篇去成都旅游的攻略”,AI 生成的内容可能只是泛泛而谈,缺乏对景点特色、美食推荐、住宿选择等方面的深入分析和详细介绍 。而使用结构化列表优化后的提示词,能让 AI 生成更符合需求的旅游攻略:

  • 旅游目的地:成都
  • 旅行时间:5 天 4 晚
  • 游客偏好
    • 景点类型:历史文化景点(如武侯祠、杜甫草堂)、自然景观(如青城山、西岭雪山)、休闲娱乐场所(如锦里古街、宽窄巷子)。
    • 美食偏好:偏爱辣食,喜欢尝试当地特色小吃。
    • 住宿要求:希望住在市中心,交通便利,酒店预算每晚 300 - 500 元。
  • 行程安排
    • 第一天:抵达成都 - 前往酒店办理入住 - 游览锦里古街,品尝蛋烘糕、糖油果子等小吃 - 晚上体验成都夜景。
    • 第二天:参观武侯祠,了解三国文化 - 步行至锦里古街,品尝武侯祠附近的特色川菜,如麻婆豆腐、回锅肉 - 下午前往杜甫草堂,感受诗歌文化 - 晚餐在草堂附近的餐馆享用,尝试龙抄手、钟水饺等小吃。
    • 第三天:前往青城山,欣赏自然风光,爬山锻炼身体 - 山上有一些道观和寺庙,可以参观游览 - 在青城山附近的农家乐品尝当地的农家菜,如老腊肉、野菜煎蛋 - 晚上返回市区。
    • 第四天:前往西岭雪山,体验滑雪或欣赏雪景(根据季节选择) - 在景区内用餐,有一些快餐和小吃可供选择 - 下午返回市区,前往宽窄巷子,逛逛特色小店,品尝兔头、钵钵鸡等小吃 - 晚上在宽窄巷子附近的酒吧或茶馆放松。
    • 第五天:收拾行李,办理退房 - 在市区购买一些成都特产,如火锅底料、川茶等 - 结束愉快的成都之旅。

通过这样的结构化提示词,AI 能够清晰地了解游客的各项需求,从而生成详细、个性化的旅游攻略,包括每天的行程安排、景点介绍、美食推荐以及住宿建议等,为游客提供更有价值的信息 。

再以故事创作为例,非结构化提示词 “写一个冒险故事”,AI 可能会生成一个缺乏具体情节和人物设定的简单故事 。而结构化提示词则能让故事更加丰富精彩:

  • 故事背景:设定在一个神秘的古代遗迹世界,这个遗迹隐藏着巨大的宝藏和未知的危险,被古老的诅咒所笼罩,只有解开一系列谜题才能进入核心区域。
  • 主要人物
    • 主角:一位年轻勇敢的探险家,对古代文明充满热爱,拥有丰富的历史知识和敏捷的身手,为了探寻遗迹的秘密和宝藏踏上冒险之旅。
    • 伙伴:一位精通机械和科技的工程师,擅长发明各种实用工具,性格开朗乐观,总是能在关键时刻想出解决问题的办法。
    • 反派:一个贪婪的寻宝组织头目,不择手段地想要获取遗迹中的宝藏,为达目的不惜伤害他人,与主角等人展开激烈竞争。
  • 核心情节
    • 开端:主角偶然得知神秘遗迹的传说,决定组队前往探索。他们在准备过程中收集相关资料,了解遗迹的历史和可能存在的危险,并准备好各种探险装备。
    • 发展:进入遗迹后,主角等人遇到了各种机关陷阱和谜题。他们凭借主角的知识和伙伴的技术,一次次化险为夷。然而,在探索过程中,他们发现了反派组织的踪迹,双方展开了多次交锋。
    • 高潮:主角等人终于找到了遗迹的核心区域,但也遭遇了最强大的机关和反派组织的全力阻拦。在激烈的战斗和紧张的解谜过程中,主角等人逐渐揭开了遗迹背后的秘密,发现宝藏并非普通的金银财宝,而是一种具有巨大能量的神秘物品,一旦被反派获得,将会带来巨大的灾难。
    • 结局:主角等人齐心协力,战胜了反派,成功守护了神秘物品,并将其妥善安置。他们带着珍贵的历史资料和冒险经历离开了遗迹,成为了人们敬仰的英雄。

借助这样的结构化提示词,AI 能够围绕明确的背景、人物和情节展开创作,生成的冒险故事更加跌宕起伏、引人入胜,具有更强的可读性和吸引力 。

6.2 代码生成

在代码生成场景中,结构化提示词同样发挥着关键作用,能引导模型生成更准确、高效的代码 。以使用 Python 编写一个简单的数据分析程序为例,非结构化提示词 “写一个 Python 数据分析代码”,AI 生成的代码可能功能简单、缺乏针对性,无法满足具体的分析需求 。而结构化提示词可以如下设计:

  • 任务目标:使用 Python 对一份销售数据文件(格式为 CSV)进行分析,统计每个产品的销售总量、平均销售额,并找出销售额最高的产品。
  • 数据来源:数据文件路径为 “sales_data.csv”,文件包含以下字段:产品名称、销售日期、销售数量、销售金额。
  • 代码要求
    • 使用 Pandas 库读取和处理数据。
    • 代码要有详细的注释,解释每一步的操作目的。
    • 最终结果以清晰的表格形式输出,包含产品名称、销售总量、平均销售额、最高销售额产品。

基于这样的结构化提示词,AI 生成的 Python 代码如下:

 

import pandas as pd

# 读取CSV文件

data = pd.read_csv('sales_data.csv')

# 统计每个产品的销售总量

product_sales_quantity = data.groupby('产品名称')['销售数量'].sum()

# 统计每个产品的平均销售额

product_average_sales = data.groupby('产品名称')['销售金额'].mean()

# 找出销售额最高的产品

highest_sales_product = data.groupby('产品名称')['销售金额'].sum().idxmax()

# 合并统计结果为一个DataFrame

result = pd.DataFrame({

'产品名称': product_sales_quantity.index,

'销售总量': product_sales_quantity.values,

'平均销售额': product_average_sales.values

})

# 添加最高销售额产品列

result['最高销售额产品'] = highest_sales_product if result['产品名称'].eq(highest_sales_product).any() else '无匹配产品'

# 输出结果

print(result)

通过结构化提示词,AI 能够准确理解任务需求,运用合适的库和方法进行代码编写,生成的代码不仅实现了数据分析的功能,而且结构清晰、易于理解和维护 。在实际应用中,结构化提示词还可以进一步细化,如指定数据处理的具体算法、对结果进行可视化展示的要求等,从而引导 AI 生成更复杂、更符合实际需求的代码 。

6.3 数据分析

在数据分析任务中,结构化提示词能帮助我们更清晰地表达分析需求,提高分析结果的准确性和实用性 。以分析一家电商公司的用户购买行为数据为例,非结构化提示词 “分析用户购买行为数据” 过于笼统,AI 难以把握分析的重点和方向 。而结构化提示词可以这样构建:

  • 数据概述:数据包含用户 ID、购买时间、购买商品类别、购买金额等字段,存储在名为 “user_purchase_data.csv” 的 CSV 文件中。
  • 分析目标
    • 分析不同时间段(按季度划分)的用户购买金额分布,找出购买金额高峰和低谷的季度。
    • 统计各类商品的购买频率,找出最受欢迎和最不受欢迎的商品类别。
    • 分析新用户和老用户(以注册时间超过 3 个月为老用户划分)的购买行为差异,包括平均购买金额、购买频率等方面。
  • 分析方法
    • 使用 Python 的 Pandas 库进行数据读取和预处理。
    • 利用 Matplotlib 或 Seaborn 库进行数据可视化,绘制柱状图展示各类商品的购买频率,绘制折线图展示不同时间段的用户购买金额变化。

根据这个结构化提示词,我们可以进行如下数据分析操作:

 

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

# 读取数据

data = pd.read_csv('user_purchase_data.csv')

# 将购买时间转换为日期时间类型

data['购买时间'] = pd.to_datetime(data['购买时间'])

# 按季度划分购买时间

data['季度'] = data['购买时间'].dt.quarter

# 分析不同时间段的用户购买金额分布

quarterly_sales = data.groupby('季度')['购买金额'].sum()

plt.figure(figsize=(10, 5))

sns.lineplot(x=quarterly_sales.index, y=quarterly_sales.values)

plt.title('不同季度用户购买金额分布')

plt.xlabel('季度')

plt.ylabel('购买金额')

plt.show()

# 统计各类商品的购买频率

product_purchase_frequency = data['购买商品类别'].value_counts()

plt.figure(figsize=(10, 5))

sns.barplot(x=product_purchase_frequency.index, y=product_purchase_frequency.values)

plt.title('各类商品购买频率')

plt.xlabel('商品类别')

plt.ylabel('购买频率')

plt.xticks(rotation=45)

plt.show()

# 划分新老用户

data['注册时间'] = pd.to_datetime(data['注册时间'])

data['用户类型'] = data.apply(lambda row: '老用户' if (row['购买时间'] - row['注册时间']).days > 90 else '新用户', axis=1)

# 分析新老用户的购买行为差异

new_user_data = data[data['用户类型'] == '新用户']

old_user_data = data[data['用户类型'] == '老用户']

new_user_avg_purchase = new_user_data['购买金额'].mean()

old_user_avg_purchase = old_user_data['购买金额'].mean()

new_user_purchase_frequency = new_user_data.shape[0]

old_user_purchase_frequency = old_user_data.shape[0]

print(f'新用户平均购买金额: {new_user_avg_purchase}')

print(f'老用户平均购买金额: {old_user_avg_purchase}')

print(f'新用户购买频率: {new_user_purchase_frequency}')

print(f'老用户购买频率: {old_user_purchase_frequency}')

通过结构化提示词,我们明确了数据的来源、分析目标和方法,使得数据分析过程更加有条理,生成的分析结果也更能满足实际业务需求,为电商公司制定营销策略、优化产品布局等提供有力的数据支持 。

七、实践与技巧分享

7.1 练习方法

  • 模仿优秀示例:在网络上搜索与自己需求相似的优秀结构化提示词示例,仔细研究其结构、语言表达和逻辑组织方式。例如,在学习如何撰写产品推广文案的提示词时,可以搜索知名品牌的产品推广文案提示词,分析它们是如何明确产品特点、目标受众和推广目标的。然后,尝试模仿这些示例,结合自己的产品或任务进行改写和练习,逐渐掌握构建有效提示词的技巧 。
  • 自我提问与细化:在面对一个任务时,通过自我提问的方式,不断挖掘任务中的关键信息和细节,将其转化为结构化提示词的各个部分。比如,当需要 AI 生成一篇旅游攻略时,可以问自己:旅游目的地是哪里?旅行时间有多久?游客有哪些特殊偏好,如美食、住宿要求等?旅行的主要目的是休闲度假、文化体验还是其他?通过这些问题,逐步细化提示词,使其更加完整和准确 。
  • 进行对比实验:针对同一个任务,使用不同结构和内容的提示词输入给 AI,观察输出结果的差异。分析哪些提示词生成的结果更符合需求,哪些存在不足,从而总结经验,改进提示词的构建方法。例如,在要求 AI 生成一个故事时,可以分别使用简洁的提示词和详细的结构化提示词进行测试,对比生成故事的情节丰富度、逻辑性和趣味性,从中找出最适合的提示词方式 。
  • 参与相关社区和讨论:加入 AI 相关的社区、论坛或群组,与其他爱好者和专业人士交流提示词优化的经验和技巧。在社区中,分享自己的练习成果和遇到的问题,听取他人的意见和建议。同时,也可以学习其他人的优秀实践案例,拓宽自己的思路和视野 。例如,在 CSDN 社区中,有很多关于 AI 提示词的讨论帖子,参与其中可以获取到不同领域、不同场景下的提示词优化方法和经验 。

7.2 避免常见错误

  • 结构混乱:在构建结构化提示词时,要确保各个部分的层次清晰、逻辑连贯。避免出现内容重复、嵌套错误或顺序颠倒等问题。例如,在使用 Markdown 格式撰写提示词时,要正确使用标题和列表,不要随意跳过某个级别或混淆不同级别的标题。如果在一个项目策划提示词中,将市场推广部分放在了项目目标之前,就会导致结构混乱,影响 AI 对任务的理解 。
  • 信息遗漏:仔细检查提示词,确保包含了所有必要的信息。遗漏关键信息可能会导致 AI 生成的结果不完整或偏离需求。比如,在要求 AI 生成一份会议纪要时,忘记提供会议的主题、参会人员等基本信息,AI 就无法准确生成符合要求的纪要内容 。
  • 格式错误:如果使用特定的结构化格式,如 JSON 或 XML,要严格遵循其语法规则,避免出现格式错误。例如,在 JSON 格式中,键值对的引号必须是双引号,对象和数组的括号必须匹配,不能有多余的逗号等。一个简单的格式错误,如忘记在 JSON 对象的最后一个键值对后添加逗号,可能会导致 AI 无法正确解析提示词 。
  • 语言表达模糊:使用清晰、准确的语言来表达任务要求,避免使用模糊、抽象或有歧义的词汇。例如,不要说 “写一篇有趣的文章”,而应具体说明 “写一篇以幽默风趣的语言介绍宠物饲养技巧的文章,适合在社交媒体上分享,能吸引宠物爱好者的关注” 。模糊的语言会让 AI 难以理解具体需求,从而生成不符合期望的内容 。

7.3 持续优化

AI 模型在不断发展和更新,其对提示词的理解和处理能力也在持续变化。同时,我们的任务需求和应用场景也可能会随着时间的推移而发生改变。因此,持续优化提示词是非常重要的,它能确保我们始终获得高质量的 AI 输出结果 。

每次使用 AI 完成任务后,都要认真分析输出结果,思考哪些地方符合预期,哪些地方还存在不足。根据分析结果,对提示词进行针对性的调整和优化。例如,如果发现 AI 生成的文章内容深度不够,可以在提示词中增加对观点阐述和分析深度的要求;如果生成的代码存在效率问题,可以在提示词中明确对代码性能的期望 。

关注 AI 技术的最新发展动态和相关研究成果,了解模型在不同场景下的最佳实践方法,将新的理念和技巧应用到提示词的优化中。随着 AI 技术的进步,可能会出现更有效的提示词构建方式或新的结构化格式,及时掌握这些信息并加以运用,能够不断提升我们与 AI 交互的效果 。例如,一些新的研究可能会发现特定模型对某些类型的提示词结构或语言表达更敏感,我们可以根据这些研究结果优化自己的提示词 。

建立提示词库,将经过优化且效果良好的提示词保存下来,方便在后续的类似任务中复用。同时,对提示词库进行分类管理,如按照任务类型、应用领域等进行分类,便于快速查找和调用 。在复用提示词时,也要根据具体任务的特点进行适当的调整和优化,以适应不同的需求 。通过持续优化提示词,我们能够不断提升与 AI 的协作效率和质量,充分发挥 AI 在各个领域的强大功能 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值