提升深度学习可视化:在Chatbox AI中优化Ollama部署DeepSeek-R1的技术方案【Windows】

引言

背景:2025年1.20日,DeepSeek-R1 发布,性能对标 OpenAI o1 正式版

  • DeepSeek-R1 遵循 MIT License,允许用户通过蒸馏技术借助 R1 训练其他模型。
  • DeepSeek-R1 上线 API,对用户开放思维链输出,通过设置 model='deepseek-reasoner' 即可调用。
  • DeepSeek 官网与 App 即日起同步更新上线。

DeepSeek-R1 在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版。

image-20250207092332312

图 2 描述了 DeepSeek R1-Zero 在整个 RL 训练过程中在 AIME 2024 基准测试上的性能轨迹。如图所示,随着 RL 训练的推进,DeepSeek-R1-Zero 的性能得到了稳定和一致的增强。值得注意的是,AIME 2024 的平均 pass@1 分数显示显着提高,从最初的 15.6% 跃升至令人印象深刻的 71.0%,达到与 OpenAI-o1-0912 相当的性能水平。这一显著改进凸显了DeepSeek-R1的 RL 算法在随时间推移优化模型性能方面的有效性

DeepSeek-R1-Zero 和 OpenAI 的 o1-0912 模型在各种推理相关基准测试中的比较分析。

image-20250207093534170

  • 例如,当 AIME 基准测试采用多数表决时,DeepSeek-R1-Zero 的性能从 71.0% 升级到 86.7%,从而超过了 OpenAI-o1-0912 的性能。DeepSeek-R1-Zero 能够在有和没有多数投票的情况下实现如此有竞争力的性能,这凸显了其强大的基础能力和在推理任务方面进一步发展的潜力。

DeepSeek-R1-Zero 中间版本的一个有趣的“顿悟时刻”。该模型学会使用拟人化的语气重新思考。这对我们来说也是一个顿悟的时刻,让我们见证了强化学习的力量和美丽

image-20250207093812002

蒸馏小模型超越 OpenAI o1-mini

  1. 在开源 DeepSeek-R1-Zero 和 DeepSeek-R1 两个 660B 模型的同时,通过 DeepSeek-R1 的输出,蒸馏了 6 个小模型开源给社区,其中 32B 和 70B 模型在多项能力上实现了对标 OpenAI o1-mini 的效果。这里由于我的电脑不太行,在本文中我使用的是1.5B

image-20250207094405231

本次目标:在本地使用Ollama部署DeepSeek,并通过Chatbox AI进一步提升效果。

本地部署

image-20250207143255530

  • 验证是否安装成功,Win+R,输入cmd,回车,输入ollama -v,可以看到安装成功

image-20250207143706012

  • 接下来,回到ollama官网,找到Models,点进去

image-20250207143943091

  • 点击第一个deepseek-r1

image-20250207144102941

  • 刚开始选择这个最小的,重在体验,别的太大了

image-20250207144415611

  • Win+R,输入cmd,回车,输入命令ollama run deepseek-r1:1.5b,他会自动下载,大概20分钟,由于我已经下过了,这里直接是下载好之后的,可以看到可以回答了,但是这个页面有点难看,将它部署到chatbox中

image-20250207144753911

image-20250207145141328

  • 下好之后打开,找到OLLALMA API模型,选择自己刚才下好的模型,点击保存,现在来看效果

image-20250207145342073

  • 继续刚才的提问,可以看到效果有了显著提高

  • 方法二:Node.JS搭建

    调用大模型非常简单,官方给了一段简单的使用代码,可以查看 DeepSeek API Docs

    这里我们使用NodeJS版本的代码,核心还是使用 OpenAI Node SDK 来作为基础载体,然后根据提供的模型地址来响应数据

    在命令端cmd,安装openai依赖,前提是大家要将node.js安装并配置好

    这个是其他博主的教程2024最新版Node.js下载安装及环境配置教程【保姆级】_nodejs下载-CSDN博客

    ➜ npm install openai
    
    

    先来deepseek官网,获取我们要使用的api

    image-20250207150725795

  • 创建一个api,一定提前复制好保存起来,待会要使用

image-20250207150814745

  • 准备工作完成,我们在桌面创建一个文件夹deepseek,里面放三个文件

image-20250207151024418

1.config.js中的代码

// config.js
export const CHAT_CONFIG = {
  // your config properties here
};

2.package.json中的代码

{
  "type": "module"
}

3.进入官方api文档,找到node.js,复制出来

image-20250207151252225

4.node.js中的代码

// Please install OpenAI SDK first: `npm install openai`

import OpenAI from "openai";

const openai = new OpenAI({
        baseURL: 'https://api.deepseek.com',
        apiKey: '<DeepSeek API Key>'
});

async function main() {
  const completion = await openai.chat.completions.create({
    messages: [{ role: "system", content: "You are a helpful assistant." }],
    model: "deepseek-chat",
  });

  console.log(completion.choices[0].message.content);
}

main();

5.如图,这是我的main.js中的代码,存放的是刚才从官方复制过来的node.js代码

image-20250207151605021

import OpenAI from "openai";
import { CHAT_CONFIG } from "./config.js";

const openai = new OpenAI({
  ...CHAT_CONFIG,
  baseURL: 'https://api.deepseek.com',
  apiKey: '你的api直接复制到引号里来'
});

async function main() {
  const completion = await openai.chat.completions.create({
    messages: [{ role: "user", content: "中国有多少个省份" }],
    model: "deepseek-chat",
  });

  console.log(completion.choices[0].message.content);
}

main();

6.打开命令端,我们来运行一下,看是否成功,运行命令npm main.js,可以看到答案已经出现

image-20250207151953749

总结与展望

通过本次技术实践,我们成功地将DeepSeek从本地Ollama部署环境迁移到Chatbox AI,并显著改善了其可视化效果。尽管在本地部署时遇到了一些可视化不佳的问题,但通过转向更适合的云端平台,我们不仅解决了这些问题,还进一步提升了系统的性能与用户体验。这一过程不仅展示了如何通过技术手段提升数据可视化质量,也为开发者在部署类似应用时提供了宝贵的经验。

通过本次技术实践,我们成功地将DeepSeek从本地Ollama部署环境迁移到Chatbox AI,并显著改善了其可视化效果。尽管在本地部署时遇到了一些可视化不佳的问题,但通过转向更适合的云端平台,我们不仅解决了这些问题,还进一步提升了系统的性能与用户体验。这一过程不仅展示了如何通过技术手段提升数据可视化质量,也为开发者在部署类似应用时提供了宝贵的经验。

在未来,随着深度学习和AI技术的不断发展,我们可以期待更多针对可视化和性能优化的工具与技术的出现。对于DeepSeek这样的数据驱动型工具,如何在保证高效能的同时提供更直观、更美观的可视化呈现,依然是一个持续探索的课题。

### 如何免费调用 DeepSeek-R1 满血版大语言模型 API DeepSeek-R1 是由深度求索(DeepSeek)开发的一系列高性能大语言模型之一,其提供了一定数量的免费 Tokens 用于用户体验和测试。以下是关于如何通过阿里云百炼平台免费调用 DeepSeek-R1 的具体说明: #### 百炼平台上的 DeepSeek-R1 调用方式 阿里云百炼平台已经集成并开放了 DeepSeek 系列模型的 API 接口服务[^2]。对于希望尝试 DeepSeek-R1 模型的开发者来说,可以通过该平台申请访问权限,并利用平台上提供的免费 Tokens 进行初步探索。 - **免费 Token 数量**:DeepSeek-R1 提供高达 100 万次免费 Token 使用额度,这足以满足大多数用户的初期实验需求[^1]。 - **API 调用特点**:百炼平台不仅提供了标准化的 API 接口,还内置了负载均衡以及自动扩缩容功能,从而确保了高稳定性和高效能的服务质量[^3]。 #### 图形化工具简化操作流程 为了降低技术门槛,使更多用户能够便捷地使用这些先进的 AI 工具,百炼平台推出了 Chatbox 可视化界面客户端。这一工具允许用户无需深入学习复杂的命令行指令即可完成配置与部署工作。借助直观易懂的操作面板,即使是初学者也能快速上手并成功运行自己的第一个基于 DeepSeek-R1 的项目。 ```python import requests url = "https://bailian.aliyun.com/api/v1/deepseek-r1" headers = { 'Authorization': 'Bearer YOUR_ACCESS_TOKEN', 'Content-Type': 'application/json' } data = {"prompt": "你好", "max_tokens": 50} response = requests.post(url, headers=headers, json=data) print(response.json()) ``` 上述代码片段展示了如何向 DeepSeek-R1 发送请求的一个简单例子。请注意替换 `YOUR_ACCESS_TOKEN` 部分为您从百炼获取的实际令牌值。 #### 总结 综上所述,如果想要免费试用 DeepSeek-R1 满血版本,则推荐前往阿里云旗下的百炼平台注册账号并按照指引开通相应服务。凭借所提供的大量免费 Tokens 和友好的交互环境,个人研究者或者小型团队均能在不增加额外成本的情况下充分挖掘这款强大模型的能力。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值