- 博客(3)
- 收藏
- 关注
原创 【深度学习基础】线性神经网络 _ softmax回归
举一个极端的例子,假如数据流中的每个数据完全相同,这会是一个非常无聊的数据流。例如,在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。在我们的例子中,由于我们有4个特征和3个可能的输出类别,我们将需要12个标量来表示权重(带下标的。然而,顾名思义,全连接层是“完全”连接的,可能有很多可学习的参数。在我们的例子中,标签。为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。当我们赋予一个事件较低的概率时,我们的惊异会更大,该事件的信息量也就更大。
2025-02-21 09:41:57
1020
1
原创 多层感知机 | 实战Kaggle比赛:预测房价
例如,如果我们在俄亥俄州农村地区估计一栋房子的价格时,假设我们的预测偏差了10万美元,然而那里一栋典型的房子的价值是12.5万美元,那么模型可能做得很糟糕。另一方面,如果我们在加州豪宅区的预测出现同样的10万美元的偏差,(在那里,房价中位数超过400万美元)这可能是一个不错的预测。,它可以将数据集名称的字符串映射到数据集相关的二元组上,这个二元组包含数据集的url和验证文件完整性的sha-1密钥。接下来,如图3中所示,我们可以提交预测到Kaggle上,并查看在测试集上的预测与实际房价(标签)的比较情况。
2025-02-16 20:03:05
1191
2
原创 深度学习计算 | 层和块
要想直观地了解块是如何工作的,最简单的方法就是自己实现一个。在实现我们自定义块之前,我们简要总结一下每个块必须提供的基本功能。将输入数据作为其前向传播函数的参数。通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。存储和访问前向传播计算所需的参数。根据需要初始化模型参数。
2025-02-16 19:53:09
1143
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅