一、回溯法理论基础
回溯法:回溯法也可以叫做回溯搜索法,它是一种搜索的方式。回溯是递归的副产品,只要有递归就会有回溯。回溯函数也就是递归函数,指的都是一个函数,一般没有返回值。
回溯法的效率:回溯法并不是什么高效的算法。因为回溯的本质是穷举,穷举所有可能,暴力搜索,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
回溯法应用范围:
一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
回溯法解决的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
回溯法模板:
- 回溯函数模板返回值以及参数
在回溯算法中,我的习惯是函数起名字为backtracking,回溯算法中函数返回值一般为void。
因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。
- 回溯函数终止条件
既然是树形结构,就知道遍历树形结构一定要有终止条件。所以回溯也有要终止条件。从树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一个答案,把这个答案存放起来,并结束本层递归。
- 回溯搜索的遍历过程
回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少,backtracking这里自己调用自己,实现递归。大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。
回溯法模板如下:
二、组合
链接:力扣
描述:给定两个整数 n
和 k
,返回范围 [1, n]
中所有可能的 k
个数的组合。
你可以按 任何顺序 返回答案。
思路如下:
回溯法三部曲:
1、确定函数需要的参数和返回值:
两个全局变量,一个用来存放符合条件单一结果,用v表示,一个用来存放符合条件结果的集合result。也可以在调用的时候作为参数传进去。
还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] ),需要startIndex来记录下一层递归,搜索的起始位置。
2、终止条件,即遍历到了叶子结点。当存放单个数组v的大小达到了k,说明应该终止了,搜集结果到result中,并且结束本层递归。
3、单层搜索的过程,回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。for循环每次从startIndex开始遍历。
代码如下:
class Solution {
public:
vector<vector<int>>result;
vector<int>v;//存放单个集合
void backtracking(int n,int k, int start)
{
//start是起始的遍历元素
if (v.size()==k)
{
//终止条件,应当收集结果
result.push_back(v);
return;
}
for (int i=start; i <= n; i++)
{//单层逻辑
v.push_back(i);
backtracking(n,k,i+1);//递归
v.pop_back();//回溯
}
}
vector<vector<int>> combine(int n, int k)
{
this->backtracking(n, k, 1);
return result;
}
};
运行如下: