# -*- coding: UTF-8 -*-
from pyspark import SparkContext
if __name__ == '__main__':
#********** Begin **********#
# 1.初始化 SparkContext,该对象是 Spark 程序的入口
sc = SparkContext("local", "Simple App")
# 文本文件 RDD 可以使用创建 SparkContext 的textFile 方法。此方法需要一个 URI的 文件(本地路径的机器上,或一个hdfs://,s3a://等URI),并读取其作为行的集合
# 2.读取本地文件,URI为:/root/wordcount.txt
raw = sc.textFile("/root/wordcount.txt")
rdd = raw.map(lambda x:x)
# 3.使用 rdd.collect() 收集 rdd 的内容。 rdd.collect() 是 Spark Action 算子,在后续内容中将会详细说明,主要作用是:收集 rdd 的数据内容
rdd.collect()
# 4.打印 rdd 的内容
print(rdd.collect())
# 5.停止 SparkContext
sc.stop()
#********** End **********#
# -*- coding: UTF-8 -*-
from pyspark import SparkContext
if __name__ == '__main__':
#********** Begin **********#
# 1.初始化 SparkContext,该对象是 Spark 程序的入口
sc = SparkContext("local", "Simple App")
# 文本文件 RDD 可以使用创建 SparkContext 的textFile 方法。此方法需要一个 URI的 文件(本地路径的机器上,或一个hdfs://,s3a://等URI),并读取其作为行的集合
# 2.读取本地文件,URI为:/root/wordcount.txt
raw = sc.textFile("/root/wordcount.txt")
rdd = raw.map(lambda x:x)
# 3.使用 rdd.collect() 收集 rdd 的内容。 rdd.collect() 是 Spark Action 算子,在后续内容中将会详细说明,主要作用是:收集 rdd 的数据内容
rdd.collect()
# 4.打印 rdd 的内容
print(rdd.collect())
# 5.停止 SparkContext
sc.stop()
#********** End **********#