文章目录
A. Do Not Be Distracted!
题目描述:输入 t 组数据。n 项任务,不同任务用不同大写字母表示。每天只能做一项任务,如果一项任务分成了多次做,且中间又做了其他的任务,则会被怀疑。如果会被怀疑输出NO,不会被怀疑输出YES
题解:
这个题目主要考虑用桶来做,用桶标记字母,如果在后面出现了前面标记的字母,就输出NO,否则输出YES
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
const int maxn=1e6+10;
bool flag[maxn]={false};
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
string s;
cin>>s;
bool f=false;
for(int i=0;i<n;i++){
if(s[i]!=s[i+1]&&flag[s[i]]==false){
flag[s[i]]=true;
}else if(flag[s[i]]==true){
f=true;
break;
}
}
if(f==true) cout<<"NO"<<"\n";
else cout<<"YES"<<"\n";
for(int i=0;i<=200;i++){
flag[i]=false;
}
}
return 0;
}
B. Ordinary Numbers
输入 t组数据。如果一个正整数 n 在十进制符号中的所有数位都相同,我们就称它为普通数。对于给定的数 n,求从 1 到 n的数中普通数的个数。
题解:
十进制有1-9,每次加上一样的位数值(1->11->111->1111),要求小于等于n就可以。
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
long long ans=0;
for(int i=1;i<=9;i++){
long long j=i,k=i;
while(j<=n){
ans++;
j=j*10+k;
}
}
cout<<ans<<"\n";
}
return 0;
}
C. Not Adjacent Matrix
题目描述:构造一个n×n的矩阵,使得相邻两个数的差值>1,且1到n^2内每个数都在矩阵中出现一次
题解:
我们可以先填奇数,在填偶数
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
int main(){
int t;
cin>>t;
while(t--){
int n;
cin>>n;
if(n==1) cout<<1<<"\n";
if(n==2) cout<<-1<<"\n";
else{
int oushu=2,jishu=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(jishu<=n*n){
cout<<jishu<<" ";
jishu+=2;
}else if(oushu<=n*n){
cout<<oushu<<" ";
oushu+=2;
}
}
cout<<"\n";
}
}
}
return 0;
}
D. Same Differences
题目描述:给定一个数列a,询问存在多少个二元组 ( i , j ) (i,j) (i,j)满足 i < j i<j i<j且 a j − a i = j − i aj-ai=j-i aj−ai=j−i
题解:
a
j
−
a
i
=
j
−
i
aj-ai=j-i
aj−ai=j−i可以看做
a
j
−
j
=
a
i
−
i
aj-j=ai-i
aj−j=ai−i
此时我们只需要用一个map数组记录每个数
a
i
−
i
ai-i
ai−i的次数就可以,随后在求出对数
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main(){
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
map<ll,ll> mp;
for(ll i=1;i<=n;i++){
ll a;
cin>>a;
mp[a-i]++;
}
ll ans=0;
map<ll,ll>::iterator it;
for(it=mp.begin();it!=mp.end();it++){
if(it->second>=2){
ll n=it->second;
ans+=n*(n-1)/2;
}
}
cout<<ans<<"\n";
}
return 0;
}
E. Arranging The Sheep
题目描述:给定一个字符串S,仅包含字符.与∗分别表示空地和绵羊每次操作可以将任意一只绵羊往左或者往右移动一格,只要目标位置存在且为空地要求将所有绵羊弄到一起(任意两只绵羊间不能空地)问最小的操作数
题解:
向中间的
∗
*
∗靠拢的步数是最少的,记录以每个位置的字符*为中心需要左边移动多少,右边移动多少,然后取左右边移动的和最小即为答案。
ll l[1000005],r[1000005];
char s[1000005];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
ll t,n;
cin>>t>>n;
while(t--)
{
cin>>n>>s;
for(int i=0;i<n;i++)
{
l[i]=0;
r[i]=0;
}
ll k1=0,k2=0,m1=0,m2=0,sum1=0,sum2=0;
for(int i=0;i<n;i++)
{
if(s[i]=='*'){
l[i]=k1*m1+sum1;
sum1=l[i];
k1++;
m1=0;
}
else if(s[i]=='.') m1++;
}
ll minx=INT_MAX;
for(int i=n-1;i>=0;i--){
if(s[i]=='*'){
r[i]=k2*m2+sum2;
minx=min(minx,l[i]+r[i]);
sum2=r[i];
k2++;
m2=0;
}else if(s[i]=='.') m2++;
}
if(minx==INT_MAX) cout<<0<<"\n";
else cout<<minx<<"\n";
}
return 0;
}
F1. Guess the K-th Zero (Easy version)
题目描述:有n个由(1,0)组成的数,每次可以(l-r)的元素和,判断第k个0在那个位置。
题解:
二分找到l和mid的位置
int main() {
cin>>n>>t>>k;
int l=1,r=n,cnt=20;
while (l<r&&cnt--){
int mid=(l+r)>>1,ans;
cout<<"? "<<l<<" "<<mid<<endl;
cout.flush();
cin>>ans;
if (mid-l+1-ans>=k){
r=mid;
}else{
k-=mid-l+1-ans;
l=mid+1;
}
}
cout<<"! "<<l;
return 0;
}