双指针算法专题之——有效三角形的个数

题目介绍

链接: 611. 有效三角形的个数

在这里插入图片描述

思路分析

如果判断三个数能否构成一个三角形,相信大家都知道:

只要任意两边之和大于第三边即可。
比如三条边长度为a,b,c
那只要满足
a+b>c
a+c>b
b+c>a

但是,这样要判断三个条件,我们来介绍另一种方法:

如果三条边的长短已经知道:a<=b<=c
那么此时只需满足较短的两条边之和大于最长的那条边,即
a+b>c
那么它们就一定能构成一个三角形,另外两个条件就不需要判断了
原理很简单,因为c是最大的,c+一个数一定比另外两条边还大。

那题目呢,是给定一个包含非负整数的数组 nums ,要返回其中可以组成三角形三条边的三元组个数。

所以,判断的时候,我们可以先给数组排个序(升序)

然后呢,我们就可以用双指针来解决这道题,具体怎么做呢?我们来看一个例子:

给这样一个数组
在这里插入图片描述
最大值是10,所以我们先让固定c为10
那a,b呢?
在这里插入图片描述
一个指向剩余区间的最大值,一个指向最小值
然后判断,此时的a+b=11,当然大于10(第一种情况:a+b>c),所以当前这一组是满足的,可以构成三角形。
然后我们观察,此时a是最小的,所以此时ab之间的数据都是>=a的,所以中间的这些数据和b相加一定都大于此时的c。
在这里插入图片描述
一共种呢,就是b的下标-c的下标
在这里插入图片描述
当前情况下就是5-0=5种。
所以中间的情况就不用判断了。b=9时一共5种情况可行。
假设两个指针left和right分别指向ab,那接下来只需让right--即可,判断c=10,b=5时候的情况
在这里插入图片描述
此时a+b<c(第二种情况:a+b<=c
所以构不成三角形,并且,可以断定此时a和ab之间的数都相加都不大于c,因为这些数都比此时的b(5)小
在这里插入图片描述
所以固定c为10的情况下,a=2时,跟2 3 4 5都不行(9已经判断过了)
所以此时让left++,看后面的行不行(后面的数一定>=2,因为已经排序)
后序也是如此进行判断。
这一轮结束后(当left>=right结束),固定c为10的情况就计算完了,只需让c指向9,right从c的前面开始,left还从0下标开始,进重复上述操作,行下一轮的判断即可。

总结一下:

  1. 先固定c为最大的数
  2. 定义双指针,按照上述逻辑,判断出当前情况下符合条件的三元组个数。
    如果a+b>c,b前面的元素个数就是b为当前值的情况下符合条件的三元组个数,然后b往前移(right- -);
    如果a+b<=c,说明a为当前值的情况下找不到满足条件的,让a往后移(left++),再重新判断
  3. 固定c为次大的数,重复上述操作,当c前面的数小于2个,就结束了(即c的下标<2)

AC代码

在这里插入图片描述
在这里插入图片描述

class Solution {
public:
    int triangleNumber(vector<int>& nums) {
        sort(nums.begin(),nums.end());

        int index_c=nums.size()-1;//c的下标
        int count=0;
        while(index_c>=2)//index_c<2,此时左边的数就不够两个了
        {
            int left=0;//标识a的位置
            int right=index_c-1;//b的位置
            while(left<right)
            {
                if((nums[left]+nums[right])>nums[index_c])      
                {
                    count+=(right-left);
                    --right;
                }
                else
                    ++left;
            }
            --index_c;
        }
        return count;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YIN_尹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值