- 博客(2)
- 收藏
- 关注
原创 NLP基于注意力的机器翻译
举个例子,假设标签序列为A、B、C、D、E、F,预测序列为A、B、B、C、D,那么p(1)=4/5,p(2)=3/4,p(3)=1/3,p(4)=0。['▁', '年', '金', '▁日本', 'に住んでいる', '20', '歳', '~', '60', '歳の', '全ての', '人は', '、', '公的', '年', '金', '制度', 'に', '加入', 'しなければなりません', '。在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。
2024-06-25 08:29:34
924
原创 使用前馈神经网络进行姓氏分类
最基础的单层感知器模型能处理像下图所示的简单的分类问题。而感知器的一个历史性的缺点是它不能学习数据中存在的一些非常重要的模式。例如下图的图像分类问题即异或(XOR)分类,在这种情况下,决策边界不能是一条直线(也称为线性可分)。在这个例子中,单层感知器失败了。于是我们将探索传统上称为前馈网络的神经网络模型,以及两种前馈神经网络:多层感知器和卷积神经网络。前馈神经网络是一种最简单的神经网络,各神经元分层排列,每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层,各层间没有反馈。接下来我们分别介绍多
2024-06-15 12:58:43
1075
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅