采用递归的算法。
递归思路:摆放n个皇后为大问题,摆放n-1个皇后为小问题。从第一个皇后开始摆起,直到第n个皇后摆放到可行位置,这时候一种摆放方法结束,输出结果,本题是默认有8皇后,并计算在已摆放任意个皇后的情况下,还有多少种摆法可行,因此需要额外判断递归出来的情况是不是符合现有棋盘上已摆放皇后的情况,从而计算可行方法数量。(注意:替换终止条件部分代码和输入部分的代码就可以实现大多数n皇后问题)
代码如下:
#include <iostream>
#include <cmath>
using namespace std;
#define SIZE 8
int flag[SIZE + 1];
int p[SIZE + 1];
int ans = 0;
bool place(int i, int j)
{
if (i == 1) return true;
int k = 1;
while (k < i)
{
if ((p[k] == j) || (abs(p[k] - j) == abs(i - k))) return false;
++k;
}
return true;
}
void queen(int i, int n)
{
if (i > n)
{
int temp = 1;
for (int i =