自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 使用含注意力机制的编码器—解码器实现机器翻译

文本摘要是一种将长文本压缩成短文本的任务,其中Encoder-Decoder模型通常用于生成一个摘要句子。在文本摘要任务中,编码器将输入文本编码成一个向量,解码器根据这个向量生成一个与输入文本相对应的摘要句子。在编码阶段,编码器读取整个输入文本(例如,一篇文章),逐词(或逐字符)处理,更新其内部状态。在处理序列的每个步骤,编码器试图捕获并累积文本的关键信息,并将这些信息编码进一个固定长度的向量中。在解码阶段,使用编码器的输出(上下文向量)作为输入,解码器开始生成文本摘要。

2024-06-23 21:37:48 1038

原创 基于Transform的机器翻译

由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。论文相关的Tensorflow的代码可以从GitHub获取,其作为Tensor2Tensor包的一部分。哈佛的NLP团队也实现了一个基于PyTorch的版本,并注释该论文。在本文中,我们将试图把模型简化一点,并逐一介绍里面的核心概念,希望让普通读者也能轻易理解。Transformer 与 RNN 不同,可以比较好地并行训练。

2024-06-23 20:39:02 1334 1

原创 基于多层感知机和CNN分别实现姓氏分类模型

多层感知机(Multilayer Perceptron,MLP)是一种经典的前馈神经网络,是深度学习中最基础的模型之一。它由一个输入层、一个或多个隐藏层和一个输出层组成,每一层中的神经元与相邻层中的神经元全连接。MLP能够处理非线性问题,是很多复杂模型的基础。import reseed=1337'''查看数据集前几行数据'''卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,特别适用于处理图像数据。

2024-06-12 00:05:36 1147

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除