- 博客(3)
- 收藏
- 关注
原创 使用含注意力机制的编码器—解码器实现机器翻译
文本摘要是一种将长文本压缩成短文本的任务,其中Encoder-Decoder模型通常用于生成一个摘要句子。在文本摘要任务中,编码器将输入文本编码成一个向量,解码器根据这个向量生成一个与输入文本相对应的摘要句子。在编码阶段,编码器读取整个输入文本(例如,一篇文章),逐词(或逐字符)处理,更新其内部状态。在处理序列的每个步骤,编码器试图捕获并累积文本的关键信息,并将这些信息编码进一个固定长度的向量中。在解码阶段,使用编码器的输出(上下文向量)作为输入,解码器开始生成文本摘要。
2024-06-23 21:37:48
1038
原创 基于Transform的机器翻译
由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。论文相关的Tensorflow的代码可以从GitHub获取,其作为Tensor2Tensor包的一部分。哈佛的NLP团队也实现了一个基于PyTorch的版本,并注释该论文。在本文中,我们将试图把模型简化一点,并逐一介绍里面的核心概念,希望让普通读者也能轻易理解。Transformer 与 RNN 不同,可以比较好地并行训练。
2024-06-23 20:39:02
1334
1
原创 基于多层感知机和CNN分别实现姓氏分类模型
多层感知机(Multilayer Perceptron,MLP)是一种经典的前馈神经网络,是深度学习中最基础的模型之一。它由一个输入层、一个或多个隐藏层和一个输出层组成,每一层中的神经元与相邻层中的神经元全连接。MLP能够处理非线性问题,是很多复杂模型的基础。import reseed=1337'''查看数据集前几行数据'''卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,特别适用于处理图像数据。
2024-06-12 00:05:36
1147
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅