【学习笔记】适可而止:生产联邦学习中针对梯度泄漏的自适应防御

1、现有工作的不足

1)共享模型的误解

大多数文献认为共享模型等同于共享梯度,但在联邦学习中,通常会使用多个epoch,且只能在梯度下降的单个步骤中本地访问梯度,实际上没有严格的原始定义的梯度被传输到服务器;只有模型更新(本地与上一轮服务器的全局模型之间的增量)被传到服务器。

注:Epoch(时期)的说明:

1、epoch是什么?

当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一次epoch。(也就是说,所有训练样本在神经网络中都进行了一次正向传播 和一次反向传播 );再通俗一点,一个Epoch就是将所有训练样本训练一次的过程。

然而,当一个Epoch的样本(也就是所有的训练样本)数量可能太过庞大(对于计算机而言),就需要把它分成多个小块,也就是就是分成多个Batch 来进行训练。

2、为什么共享模型中使用多于一个epoch

在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次。但请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降来优化学习过程。随着epoch数量增加,神经网络中的权重的更新次数也在增加,曲线从欠拟合变得过拟合。epoch的数量虽数据集的不同而不同。

2)目前一些泄密方式

1、计算梯度:文献 “A Framework for Evaluating Client Privacy Leakages in Federated Learning” 利用已知学习率的模型更新来计算梯度,但对多个epoch来说结果不准确。

2、直接破解原始数据:“See through Gradients: Image Batch Recovery via GradInversion”和“Protect Privacy from Gradient Leakage Attack in Federated Learning” 不估计梯度,根据模型更新来重建原始数据。

3)错误估计隐私泄露的威胁

没有考虑在实践中威胁多严重。即使在直接梯度共享的假设下,也只造成了非常有限的隐私泄露:主要验证在全梯度下降中重建一个/多个图像的效率,且不能证明重建的图像可以被人类识别。攻击的是更脆弱的模型和共享梯度(研究倾向于忽略联邦学习训练之后的模型状态,也更倾向于未经训练的(利用使用广泛的权重显式初始化的)神经网络)

4)防御机制性能较差

现有的针对梯度反转攻击来设计的防御(有额外开销/损坏全局效益),但没有证明DLG攻击的数据重建可行性,因此,可以采用更轻量级的新防御机制,不会引入额外开销或训练完成后牺牲全局的效益。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值