[学习笔记]适可而止:生产联邦学习中针对梯度泄漏的自适应防御

本文分析了联邦学习中梯度泄漏的实际威胁,并提出了名为OUTPOST的防御机制。OUTPOST通过Fisher信息矩阵动态添加高斯噪声,以适应性地保护隐私,同时减少计算开销和对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、摘要

        随着人们对梯度隐私泄露的关注日益增加,出现了各种攻击机制,以在诚实但好奇的服务器上从梯度中恢复隐私数据,这挑战了联邦学习中隐私保护的主要优势。然而,我们对这些梯度攻击对生产联邦学习系统的真正影响表示怀疑。通过去除文献中提出的一些不切实际的假设,我们发现梯度攻击对原始数据的隐私构成了有限程度的威胁。

       通过对联邦学习系统中现有梯度攻击的综合评估,并结合实际假设,系统地分析了其在多种配置下的有效性。我们提出了使攻击成为可能或更强所需的关键先验,例如初始模型权重的窄分布,以及在训练的早期阶段的反演。然后,我们提出了一种新的轻量级防御机制,该机制在整个联邦学习过程中提供足够的自适应保护,以防止时变的隐私泄露风险。作为梯度摄扰方法的一种变体,我们提出的防御称为哨站(OUTPOST),它根据Fisher信息矩阵在每次更新迭代时选择性地向梯度中添加高斯噪声,其中噪声的水平由每层模型权值的扩散量化的隐私泄露风险决定。为了限制计算开销和训练性能下降,前哨只执行基于迭代的衰减的扰动。我们的实验结果表明,在收敛性能、计算开销和对梯度攻击的防护方面,前哨可以实现比最新技术更好的权衡。

二、介绍

       作为一种新兴的分布式机器学习范式,联邦学习(FL)允许客户端与私有数据协作训练机器学习模型,而无需将其传输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值