机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。
1.1读取和预处理数据
我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。
!tar -xf d2lzh_pytorch.tar
这段代码是用于解压缩名为"d2lzh_pytorch.tar"的压缩文件。其中,"tar"是一个Linux命令,用于处理归档文件;"-xf"是tar命令的选项,表示解压缩并提取文件;"d2lzh_pytorch.tar"是要解压缩的文件名。
# 导入collections模块,用于创建字典和列表等数据结构
import collections
# 导入os模块,用于处理操作系统相关的操作,如环境变量设置
import os
# 导入io模块,用于处理输入输出流
import io
# 导入math模块,用于进行数学运算
import math
# 导入torch模块,用于进行深度学习相关的操作
import torch
# 从torch模块中导入nn模块,用于构建神经网络
from torch import nn
# 导入torch.nn.functional模块,提供激活函数等相关功能
import torch.nn.functional as F
# 导入torchtext.vocab模块,用于处理词汇表
import torchtext.vocab as Vocab
# 导入torch.utils.data模块,用于处理数据集
import torch.utils.data as Data
# 导入sys模块,用于处理系统相关的操作
import sys
# sys.path.append("..")
# 将上一级目录添加到系统路径中,以便导入其他模块
import d2lzh_pytorch as d2l
# 定义填充、开始和结束的标记
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
# 设置环境变量,指定使用第一个GPU设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 根据系统是否支持CUDA,选择使用CPU或GPU进行计算
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 打印PyTorch版本和使用的计算设备
print(torch.__version__, device)
接着定义两个辅助函数对后面读取的数据进行预处理。
# 定义一个函数process_one_seq,用于处理单个序列
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
# 将序列中的词添加到all_tokens列表中
all_tokens.extend(seq_tokens)
# 在序列后面添加EOS和PAD,直到序列长度达到max_seq_len
seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
# 将处理后的序列添加到all_seqs列表中
all_seqs.append(seq_tokens)
# 定义一个函数build_data,用于构建词典并将序列转换为词索引
def build_data(all_tokens, all_seqs):
# 使用all_tokens构建词典,包括特殊符号PAD、BOS和EOS
vocab = Vocab.Vocab(collections.Counter(all_tokens),
specials=[PAD, BOS, EOS])
# 将all_seqs中的词转换为词索引
indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
# 返回词典和词索引的Tensor表示
return vocab, torch.tensor(indices)
为了演示方便,我们在这里使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'
隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len
。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。
def read_data(max_seq_len):
# in和out分别是input和output的缩写
in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], [] # 初始化输入输出词汇表和序列列表
with io.open('fr-en-small.txt') as f: # 打开文件
lines = f.readlines() # 读取所有行
for line in lines: # 遍历每一行
in_seq, out_seq = line.rstrip().split('\t') # 去除行尾空格并以制表符分割
in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ') # 将输入输出序列按空格分割成单词列表
if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1: # 如果加上EOS后长于max_seq_len,则忽略掉此样本
continue
process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len) # 处理输入序列
process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len) # 处理输出序列
in_vocab, in_data = build_data(in_tokens, in_seqs) # 构建输入数据
out_vocab, out_data = build_data(out_tokens, out_seqs) # 构建输出数据
return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data) # 返回输入输出词汇表和数据集
将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。
# 设置最大序列长度为7
max_seq_len = 7
# 读取数据,包括输入词汇表、输出词汇表和数据集
in_vocab, out_vocab, dataset = read_data(max_seq_len)
# 获取数据集的第一个元素
dataset[0]
1.2含注意力机制的编码器—解码器
我们将使用含注意力机制的编码器—解码器来将一段简短的法语翻译成英语。下面我们来介绍模型的实现。
1.2.1 编码器
在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中。PyTorch的nn.GRU
实例在前向计算后也会分别返回输出和最终时间步的多层隐藏状态。其中的输出指的是最后一层的隐藏层在各个时间步的隐藏状态,并不涉及输出层计算。注意力机制将这些输出作为键项和值项。
class Encoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
drop_prob=0, **kwargs):
# 初始化Encoder类,继承自nn.Module
super(Encoder, self).__init__(**kwargs)
# 定义嵌入层,将词汇表大小映射到嵌入维度
self.embedding = nn.Embedding(vocab_size, embed_size)
# 定义GRU层,输入为嵌入维度,隐藏层大小为num_hiddens,层数为num_layers,dropout概率为drop_prob
self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)
def forward(self, inputs, state):
# 定义前向传播过程
# 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
# 将嵌入后的输入和状态传入GRU层,返回输出和更新后的状态
return self.rnn(embedding, state)
def begin_state(self):
# 定义初始状态,这里返回None,表示使用默认的初始状态
return None
下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state
就是一个元素,即隐藏状态;如果使用长短期记忆,state
是一个元组,包含两个元素即隐藏状态和记忆细胞。
# 创建一个Encoder对象,设置词汇表大小为10,嵌入层大小为8,隐藏层大小为16,层数为2
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
# 使用全零张量作为输入,调用encoder对象的forward方法,得到输出和状态
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
# 打印输出和状态的形状
# GRU的state是h, 而LSTM的是一个元组(h, c)
output.shape, state.shape
1.2.2注意力机制
我们将实现(注意力机制)中定义的函数𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear
实例均不使用偏差。其中函数𝑎定义里向量𝑣的长度是一个超参数,即attention_size
。
def attention_model(input_size, attention_size):
# 定义一个顺序模型,包含三个层:线性层、双曲正切激活函数层和线性层
model = nn.Sequential(
# 第一个线性层,输入大小为input_size,输出大小为attention_size,不使用偏置项
nn.Linear(input_size, attention_size, bias=False),
# 双曲正切激活函数层,用于非线性变换
nn.Tanh(),
# 第二个线性层,输入大小为attention_size,输出大小为1,不使用偏置项
nn.Linear(attention_size, 1, bias=False)
)
# 返回定义好的模型
return model
注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。
def attention_forward(model, enc_states, dec_state):
"""
enc_states: (时间步数, 批量大小, 隐藏单元个数)
dec_state: (批量大小, 隐藏单元个数)
"""
# 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
e = model(enc_and_dec_states) # 形状为(时间步数, 批量大小, 1)
alpha = F.softmax(e, dim=0) # 在时间步维度做softmax运算
return (alpha * enc_states).sum(dim=0) # 返回背景变量
在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。
# 设置序列长度、批量大小和隐藏层数量
seq_len, batch_size, num_hiddens = 10, 4, 8
# 创建一个注意力模型,输入维度为2倍的隐藏层数量,输出维度为10
model = attention_model(2*num_hiddens, 10)
# 初始化编码器状态,形状为(序列长度, 批量大小, 隐藏层数量)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
# 初始化解码器状态,形状为(批量大小, 隐藏层数量)
dec_state = torch.zeros((batch_size, num_hiddens))
# 调用注意力前向传播函数,传入模型、编码器状态和解码器状态,返回结果的形状
attention_forward(model, enc_states, dec_state).shape
1.2.3 含注意力机制的解码器
我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。
在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。
class Decoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
attention_size, drop_prob=0):
super(Decoder, self).__init__()
# 初始化嵌入层,将词汇表大小映射到嵌入维度
self.embedding = nn.Embedding(vocab_size, embed_size)
# 初始化注意力模型,输入维度为2倍隐藏层大小,输出维度为注意力大小
self.attention = attention_model(2*num_hiddens, attention_size)
# GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens,
num_layers, dropout=drop_prob)
# 初始化线性层,将GRU的输出映射到词汇表大小
self.out = nn.Linear(num_hiddens, vocab_size)
def forward(self, cur_input, state, enc_states):
"""
cur_input shape: (batch, )
state shape: (num_layers, batch, num_hiddens)
"""
# 使用注意力机制计算背景向量
c = attention_forward(self.attention, enc_states, state[-1])
# 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
input_and_c = torch.cat((self.embedding(cur_input), c), dim=1)
# 为输入和背景向量的连结增加时间步维,时间步个数为1
output, state = self.rnn(input_and_c.unsqueeze(0), state)
# 移除时间步维,输出形状为(批量大小, 输出词典大小)
output = self.out(output).squeeze(dim=0)
return output, state
def begin_state(self, enc_state):
# 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
return enc_state
1.3训练模型
我们先实现batch_loss
函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS
。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。这里使用掩码变量避免填充项对损失函数计算的影响。
def batch_loss(encoder, decoder, X, Y, loss):
# 获取批次大小
batch_size = X.shape[0]
# 初始化编码器状态
enc_state = encoder.begin_state()
# 对输入X进行编码,得到编码器的输出和状态
enc_outputs, enc_state = encoder(X, enc_state)
# 初始化解码器的隐藏状态
dec_state = decoder.begin_state(enc_state)
# 解码器在最初时间步的输入是BOS
dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
# 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
mask, num_not_pad_tokens = torch.ones(batch_size,), 0
l = torch.tensor([0.0])
# 遍历Y的每个元素,Y shape: (batch, seq_len)
for y in Y.permute(1,0):
# 对解码器输入进行解码,得到解码器的输出和状态
dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
# 计算损失并累加
l = l + (mask * loss(dec_output, y)).sum()
# 使用强制教学,将解码器的输出作为下一个时间步的输入
dec_input = y
# 统计非填充项的数量
num_not_pad_tokens += mask.sum().item()
# EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
mask = mask * (y != out_vocab.stoi[EOS]).float()
# 返回平均损失
return l / num_not_pad_tokens
在训练函数中,我们需要同时迭代编码器和解码器的模型参数。
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
# 初始化编码器和解码器的优化器,使用Adam优化算法,学习率设置为传入的lr参数
enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
# 定义损失函数为交叉熵损失,不进行求和操作
loss = nn.CrossEntropyLoss(reduction='none')
# 使用DataLoader加载数据集,设置批量大小为batch_size,打乱数据顺序
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
# 进行num_epochs轮训练
for epoch in range(num_epochs):
l_sum = 0.0 # 初始化损失值累加器
# 遍历数据集的每个批次
for X, Y in data_iter:
# 清空优化器的梯度缓存
enc_optimizer.zero_grad()
dec_optimizer.zero_grad()
# 计算当前批次的损失值
l = batch_loss(encoder, decoder, X, Y, loss)
# 反向传播计算梯度
l.backward()
# 更新编码器和解码器的参数
enc_optimizer.step()
dec_optimizer.step()
# 累加损失值
l_sum += l.item()
# 每10轮输出一次平均损失值
if (epoch + 1) % 10 == 0:
print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))
接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。
# 设置嵌入层大小、隐藏层大小和层数
embed_size, num_hiddens, num_layers = 64, 64, 2
# 设置注意力机制的大小、丢弃概率、学习率、批量大小和训练轮数
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
# 创建编码器实例,输入词汇表大小、嵌入层大小、隐藏层大小、层数和丢弃概率
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)
# 创建解码器实例,输出词汇表大小、嵌入层大小、隐藏层大小、层数、注意力机制大小和丢弃概率
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)
# 使用编码器、解码器、数据集、学习率、批量大小和训练轮数进行训练
train(encoder, decoder, dataset, lr, batch_size, num_epochs)
1.4预测不定长的序列
生成解码器在每个时间步的输出。这里我们实现最简单的贪婪搜索。
def translate(encoder, decoder, input_seq, max_seq_len):
# 将输入序列按空格分割成单词列表
in_tokens = input_seq.split(' ')
# 在输入序列后面添加EOS和PAD,使得序列长度达到max_seq_len
in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
# 将输入序列转换为张量,并使用输入词汇表将其转换为整数索引
enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
# 初始化编码器状态
enc_state = encoder.begin_state()
# 对输入序列进行编码,得到编码器的输出和状态
enc_output, enc_state = encoder(enc_input, enc_state)
# 初始化解码器输入为BOS对应的整数索引
dec_input = torch.tensor([out_vocab.stoi[BOS]])
# 使用编码器的状态初始化解码器状态
dec_state = decoder.begin_state(enc_state)
# 初始化输出序列
output_tokens = []
# 循环max_seq_len次,每次生成一个输出单词
for _ in range(max_seq_len):
# 使用解码器、当前解码器输入和解码器状态进行解码,得到解码器的输出和状态
dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
# 从解码器输出中选择概率最大的单词作为预测结果
pred = dec_output.argmax(dim=1)
# 将预测结果转换为对应的单词
pred_token = out_vocab.itos[int(pred.item())]
# 如果预测结果为EOS,则结束输出序列的生成
if pred_token == EOS: # 当任一时间步搜索出EOS时,输出序列即完成
break
else:
# 将预测结果添加到输出序列中
output_tokens.append(pred_token)
# 将预测结果作为下一个解码器输入
dec_input = pred
# 返回输出序列
return output_tokens
简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。
# 定义一个字符串变量 input_seq,表示输入的法语句子
input_seq = 'ils regardent .'
# 调用 translate 函数,将输入的法语句子翻译成英语句子
# 参数说明:
# encoder: 编码器模型
# decoder: 解码器模型
# input_seq: 输入的法语句子
# max_seq_len: 最大序列长度
translate(encoder, decoder, input_seq, max_seq_len)
['they', 'are', 'watching', '.']
1.5评价翻译结果
评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)[1]。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。
具体来说,设词数为𝑛的子序列的精度为𝑝𝑛。它是预测序列与标签序列匹配词数为𝑛的子序列的数量与预测序列中词数为𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,预测序列为𝐴、𝐵、𝐵、𝐶、𝐷,那么=4/5,
=3/4,
=1/3,
=0。设
和
分别为标签序列和预测序列的词数,那么,BLEU的定义为
其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。
因为匹配较长子序列比匹配较短子序列更难,BLEU对匹配较长子序列的精度赋予了更大权重。例如,当固定在0.5时,随着𝑛的增大,
≈0.7,
≈0.84,
≈0.92,
≈0.96。另外,模型预测较短序列往往会得到较高
值。因此,上式中连乘项前面的系数是为了惩罚较短的输出而设的。举个例子,当𝑘=2时,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,而预测序列为𝐴、𝐵。虽然
=
=1,但惩罚系数
,因此BLEU也接近0.14。
下面来实现BLEU的计算。
def bleu(pred_tokens, label_tokens, k):
# 计算预测序列和标签序列的长度
len_pred, len_label = len(pred_tokens), len(label_tokens)
# 计算长度惩罚因子
score = math.exp(min(0, 1 - len_label / len_pred))
# 遍历n-gram范围
for n in range(1, k + 1):
# 初始化匹配数量和标签子串计数器
num_matches, label_subs = 0, collections.defaultdict(int)
# 统计标签序列中n-gram子串出现的次数
for i in range(len_label - n + 1):
label_subs[''.join(label_tokens[i: i + n])] += 1
# 遍历预测序列,检查是否与标签子串匹配
for i in range(len_pred - n + 1):
if label_subs[''.join(pred_tokens[i: i + n])] > 0:
num_matches += 1
label_subs[''.join(pred_tokens[i: i + n])] -= 1
# 更新分数
score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score
接下来,定义一个辅助打印函数。
# 定义一个名为score的函数,接收三个参数:input_seq(输入序列),label_seq(标签序列)和k(用于计算BLEU分数的n-gram值)
def score(input_seq, label_seq, k):
# 使用translate函数将输入序列翻译成预测的tokens
pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
# 将标签序列按空格分割成tokens
label_tokens = label_seq.split(' ')
# 打印BLEU分数和预测的tokens
print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
' '.join(pred_tokens)))
预测正确则分数为1。
score('ils regardent .', 'they are watching .', k=2)
score('ils sont canadienne .', 'they are canadian .', k=2)
小结
- 可以将编码器—解码器和注意力机制应用于机器翻译中。
- BLEU可以用来评价翻译结果。
完整代码:
!tar -xf d2lzh_pytorch.tar
# 导入collections模块,用于创建字典和列表等数据结构
import collections
# 导入os模块,用于处理操作系统相关的操作,如环境变量设置
import os
# 导入io模块,用于处理输入输出流
import io
# 导入math模块,用于进行数学运算
import math
# 导入torch模块,用于进行深度学习相关的操作
import torch
# 从torch模块中导入nn模块,用于构建神经网络
from torch import nn
# 导入torch.nn.functional模块,提供激活函数等相关功能
import torch.nn.functional as F
# 导入torchtext.vocab模块,用于处理词汇表
import torchtext.vocab as Vocab
# 导入torch.utils.data模块,用于处理数据集
import torch.utils.data as Data
# 导入sys模块,用于处理系统相关的操作
import sys
# sys.path.append("..")
# 将上一级目录添加到系统路径中,以便导入其他模块
import d2lzh_pytorch as d2l
# 定义填充、开始和结束的标记
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
# 设置环境变量,指定使用第一个GPU设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 根据系统是否支持CUDA,选择使用CPU或GPU进行计算
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 打印PyTorch版本和使用的计算设备
print(torch.__version__, device)
# 定义一个函数process_one_seq,用于处理单个序列
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
# 将序列中的词添加到all_tokens列表中
all_tokens.extend(seq_tokens)
# 在序列后面添加EOS和PAD,直到序列长度达到max_seq_len
seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
# 将处理后的序列添加到all_seqs列表中
all_seqs.append(seq_tokens)
# 定义一个函数build_data,用于构建词典并将序列转换为词索引
def build_data(all_tokens, all_seqs):
# 使用all_tokens构建词典,包括特殊符号PAD、BOS和EOS
vocab = Vocab.Vocab(collections.Counter(all_tokens),
specials=[PAD, BOS, EOS])
# 将all_seqs中的词转换为词索引
indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
# 返回词典和词索引的Tensor表示
return vocab, torch.tensor(indices)
def read_data(max_seq_len):
# in和out分别是input和output的缩写
in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], [] # 初始化输入输出词汇表和序列列表
with io.open('fr-en-small.txt') as f: # 打开文件
lines = f.readlines() # 读取所有行
for line in lines: # 遍历每一行
in_seq, out_seq = line.rstrip().split('\t') # 去除行尾空格并以制表符分割
in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ') # 将输入输出序列按空格分割成单词列表
if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1: # 如果加上EOS后长于max_seq_len,则忽略掉此样本
continue
process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len) # 处理输入序列
process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len) # 处理输出序列
in_vocab, in_data = build_data(in_tokens, in_seqs) # 构建输入数据
out_vocab, out_data = build_data(out_tokens, out_seqs) # 构建输出数据
return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data) # 返回输入输出词汇表和数据集
# 设置最大序列长度为7
max_seq_len = 7
# 读取数据,包括输入词汇表、输出词汇表和数据集
in_vocab, out_vocab, dataset = read_data(max_seq_len)
# 获取数据集的第一个元素
dataset[0]
class Encoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
drop_prob=0, **kwargs):
# 初始化Encoder类,继承自nn.Module
super(Encoder, self).__init__(**kwargs)
# 定义嵌入层,将词汇表大小映射到嵌入维度
self.embedding = nn.Embedding(vocab_size, embed_size)
# 定义GRU层,输入为嵌入维度,隐藏层大小为num_hiddens,层数为num_layers,dropout概率为drop_prob
self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)
def forward(self, inputs, state):
# 定义前向传播过程
# 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
# 将嵌入后的输入和状态传入GRU层,返回输出和更新后的状态
return self.rnn(embedding, state)
def begin_state(self):
# 定义初始状态,这里返回None,表示使用默认的初始状态
return None
# 创建一个Encoder对象,设置词汇表大小为10,嵌入层大小为8,隐藏层大小为16,层数为2
encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
# 使用全零张量作为输入,调用encoder对象的forward方法,得到输出和状态
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
# 打印输出和状态的形状
# GRU的state是h, 而LSTM的是一个元组(h, c)
output.shape, state.shape
def attention_model(input_size, attention_size):
# 定义一个顺序模型,包含三个层:线性层、双曲正切激活函数层和线性层
model = nn.Sequential(
# 第一个线性层,输入大小为input_size,输出大小为attention_size,不使用偏置项
nn.Linear(input_size, attention_size, bias=False),
# 双曲正切激活函数层,用于非线性变换
nn.Tanh(),
# 第二个线性层,输入大小为attention_size,输出大小为1,不使用偏置项
nn.Linear(attention_size, 1, bias=False)
)
# 返回定义好的模型
return model
def attention_forward(model, enc_states, dec_state):
"""
enc_states: (时间步数, 批量大小, 隐藏单元个数)
dec_state: (批量大小, 隐藏单元个数)
"""
# 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
e = model(enc_and_dec_states) # 形状为(时间步数, 批量大小, 1)
alpha = F.softmax(e, dim=0) # 在时间步维度做softmax运算
return (alpha * enc_states).sum(dim=0) # 返回背景变量
# 设置序列长度、批量大小和隐藏层数量
seq_len, batch_size, num_hiddens = 10, 4, 8
# 创建一个注意力模型,输入维度为2倍的隐藏层数量,输出维度为10
model = attention_model(2*num_hiddens, 10)
# 初始化编码器状态,形状为(序列长度, 批量大小, 隐藏层数量)
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
# 初始化解码器状态,形状为(批量大小, 隐藏层数量)
dec_state = torch.zeros((batch_size, num_hiddens))
# 调用注意力前向传播函数,传入模型、编码器状态和解码器状态,返回结果的形状
attention_forward(model, enc_states, dec_state).shape
class Decoder(nn.Module):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
attention_size, drop_prob=0):
super(Decoder, self).__init__()
# 初始化嵌入层,将词汇表大小映射到嵌入维度
self.embedding = nn.Embedding(vocab_size, embed_size)
# 初始化注意力模型,输入维度为2倍隐藏层大小,输出维度为注意力大小
self.attention = attention_model(2*num_hiddens, attention_size)
# GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens,
num_layers, dropout=drop_prob)
# 初始化线性层,将GRU的输出映射到词汇表大小
self.out = nn.Linear(num_hiddens, vocab_size)
def forward(self, cur_input, state, enc_states):
"""
cur_input shape: (batch, )
state shape: (num_layers, batch, num_hiddens)
"""
# 使用注意力机制计算背景向量
c = attention_forward(self.attention, enc_states, state[-1])
# 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
input_and_c = torch.cat((self.embedding(cur_input), c), dim=1)
# 为输入和背景向量的连结增加时间步维,时间步个数为1
output, state = self.rnn(input_and_c.unsqueeze(0), state)
# 移除时间步维,输出形状为(批量大小, 输出词典大小)
output = self.out(output).squeeze(dim=0)
return output, state
def begin_state(self, enc_state):
# 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
return enc_state
def batch_loss(encoder, decoder, X, Y, loss):
# 获取批次大小
batch_size = X.shape[0]
# 初始化编码器状态
enc_state = encoder.begin_state()
# 对输入X进行编码,得到编码器的输出和状态
enc_outputs, enc_state = encoder(X, enc_state)
# 初始化解码器的隐藏状态
dec_state = decoder.begin_state(enc_state)
# 解码器在最初时间步的输入是BOS
dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
# 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
mask, num_not_pad_tokens = torch.ones(batch_size,), 0
l = torch.tensor([0.0])
# 遍历Y的每个元素,Y shape: (batch, seq_len)
for y in Y.permute(1,0):
# 对解码器输入进行解码,得到解码器的输出和状态
dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
# 计算损失并累加
l = l + (mask * loss(dec_output, y)).sum()
# 使用强制教学,将解码器的输出作为下一个时间步的输入
dec_input = y
# 统计非填充项的数量
num_not_pad_tokens += mask.sum().item()
# EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
mask = mask * (y != out_vocab.stoi[EOS]).float()
# 返回平均损失
return l / num_not_pad_tokens
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
# 初始化编码器和解码器的优化器,使用Adam优化算法,学习率设置为传入的lr参数
enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)
# 定义损失函数为交叉熵损失,不进行求和操作
loss = nn.CrossEntropyLoss(reduction='none')
# 使用DataLoader加载数据集,设置批量大小为batch_size,打乱数据顺序
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
# 进行num_epochs轮训练
for epoch in range(num_epochs):
l_sum = 0.0 # 初始化损失值累加器
# 遍历数据集的每个批次
for X, Y in data_iter:
# 清空优化器的梯度缓存
enc_optimizer.zero_grad()
dec_optimizer.zero_grad()
# 计算当前批次的损失值
l = batch_loss(encoder, decoder, X, Y, loss)
# 反向传播计算梯度
l.backward()
# 更新编码器和解码器的参数
enc_optimizer.step()
dec_optimizer.step()
# 累加损失值
l_sum += l.item()
# 每10轮输出一次平均损失值
if (epoch + 1) % 10 == 0:
print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))
# 设置嵌入层大小、隐藏层大小和层数
embed_size, num_hiddens, num_layers = 64, 64, 2
# 设置注意力机制的大小、丢弃概率、学习率、批量大小和训练轮数
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
# 创建编码器实例,输入词汇表大小、嵌入层大小、隐藏层大小、层数和丢弃概率
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)
# 创建解码器实例,输出词汇表大小、嵌入层大小、隐藏层大小、层数、注意力机制大小和丢弃概率
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)
# 使用编码器、解码器、数据集、学习率、批量大小和训练轮数进行训练
train(encoder, decoder, dataset, lr, batch_size, num_epochs)
def translate(encoder, decoder, input_seq, max_seq_len):
# 将输入序列按空格分割成单词列表
in_tokens = input_seq.split(' ')
# 在输入序列后面添加EOS和PAD,使得序列长度达到max_seq_len
in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
# 将输入序列转换为张量,并使用输入词汇表将其转换为整数索引
enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
# 初始化编码器状态
enc_state = encoder.begin_state()
# 对输入序列进行编码,得到编码器的输出和状态
enc_output, enc_state = encoder(enc_input, enc_state)
# 初始化解码器输入为BOS对应的整数索引
dec_input = torch.tensor([out_vocab.stoi[BOS]])
# 使用编码器的状态初始化解码器状态
dec_state = decoder.begin_state(enc_state)
# 初始化输出序列
output_tokens = []
# 循环max_seq_len次,每次生成一个输出单词
for _ in range(max_seq_len):
# 使用解码器、当前解码器输入和解码器状态进行解码,得到解码器的输出和状态
dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
# 从解码器输出中选择概率最大的单词作为预测结果
pred = dec_output.argmax(dim=1)
# 将预测结果转换为对应的单词
pred_token = out_vocab.itos[int(pred.item())]
# 如果预测结果为EOS,则结束输出序列的生成
if pred_token == EOS: # 当任一时间步搜索出EOS时,输出序列即完成
break
else:
# 将预测结果添加到输出序列中
output_tokens.append(pred_token)
# 将预测结果作为下一个解码器输入
dec_input = pred
# 返回输出序列
return output_tokens
# 定义一个字符串变量 input_seq,表示输入的法语句子
input_seq = 'ils regardent .'
# 调用 translate 函数,将输入的法语句子翻译成英语句子
# 参数说明:
# encoder: 编码器模型
# decoder: 解码器模型
# input_seq: 输入的法语句子
# max_seq_len: 最大序列长度
translate(encoder, decoder, input_seq, max_seq_len)
def bleu(pred_tokens, label_tokens, k):
# 计算预测序列和标签序列的长度
len_pred, len_label = len(pred_tokens), len(label_tokens)
# 计算长度惩罚因子
score = math.exp(min(0, 1 - len_label / len_pred))
# 遍历n-gram范围
for n in range(1, k + 1):
# 初始化匹配数量和标签子串计数器
num_matches, label_subs = 0, collections.defaultdict(int)
# 统计标签序列中n-gram子串出现的次数
for i in range(len_label - n + 1):
label_subs[''.join(label_tokens[i: i + n])] += 1
# 遍历预测序列,检查是否与标签子串匹配
for i in range(len_pred - n + 1):
if label_subs[''.join(pred_tokens[i: i + n])] > 0:
num_matches += 1
label_subs[''.join(pred_tokens[i: i + n])] -= 1
# 更新分数
score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score
# 定义一个名为score的函数,接收三个参数:input_seq(输入序列),label_seq(标签序列)和k(用于计算BLEU分数的n-gram值)
def score(input_seq, label_seq, k):
# 使用translate函数将输入序列翻译成预测的tokens
pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
# 将标签序列按空格分割成tokens
label_tokens = label_seq.split(' ')
# 打印BLEU分数和预测的tokens
print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
' '.join(pred_tokens)))
score('ils regardent .', 'they are watching .', k=2)
score('ils sont canadienne .', 'they are canadian .', k=2)
1.5.0 cpu epoch 10, loss 0.511 epoch 20, loss 0.241 epoch 30, loss 0.138 epoch 40, loss 0.107 epoch 50, loss 0.034 bleu 1.000, predict: they are watching . bleu 0.658, predict: they are actors .
注:可以试着使用更大的翻译数据集来训练模型,例如 WMT [2] 和 Tatoeba Project [3]。
参考文献
[1] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.
[2] WMT. Translation Task - ACL 2014 Ninth Workshop on Statistical Machine Translation
[3] Tatoeba Project. Tab-delimited Bilingual Sentence Pairs from the Tatoeba Project (Good for Anki and Similar Flashcard Applications)
为什么进行数据预处理?
处理异常值: # 使用 z-score 方法检测并处理异常值 data['column1'] = np.where(np.abs((data['column1'] - data['column1'].mean()) / data['column1'].std()) >= 3, data['column1'].mean(), data['column1']) 这里我们使用了 NumPy 的 where() 函数来检测异常值。如果 column1 列中的某个值与均值的差除以标准差的绝对值大于等于 3,则将该值视为异常值,并用均值替换。
处理重复值: #data.drop_duplicates(inplace=True) drop_duplicates() 函数用于删除 DataFrame 中的重复行。
数据的归一化 : # 使用 MinMaxScaler 进行归一化 from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() data[['column1', 'column2']] =scaler.fit_transform(data[['column1', 'column2']]) 这里我们使用了 Scikit-learn 库中的 MinMaxScaler 类来进行归一化。首先创建一个 MinMaxScaler 对象,然后调用 fit_transform() 方法对指定列进行归一化。
整合数据: # 合并多个数据集 frames = [frame1, frame2, frame3] merged_data = pd.concat(frames, ignore_index=True) 这里我们使用 Pandas 的 concat() 函数来合并多个数据集。ignore_index=True 参数表示在合并时忽略原始索引,生成新的索引。
数据规约 : # 使用 PCA 进行降维 from sklearn.decomposition import PCA pca = PCA(n_components=2) reduced_data = pca.fit_transform(data) 这里我们使用了 Scikit-learn 库中的 PCA (主成分分析) 类来进行数据规约。首先创建一个 PCA 对象,并设置保留的主成分数量为 2,然后调用 fit_transform() 方法对数据进行降维。