1.a^b
题目内容:
求 a 的 b 次方对 p 取模的值。
输入格式
三个整数 a,b,p ,在同一行用空格隔开。
输出格式
输出一个整数,表示a^b mod p
的值。
数据范围
0≤a,b≤10^9
1≤p≤10^9
#include<iostream>
#include<cmath>
typedef long long LL;
using namespace std;
int main(){
int a,b,p;
scanf("%d%d%d",&a,&b,&p);
int ans=1%p;
while(b){
if(b&1) ans=(LL)ans*a%p;
a=(LL)a*a%p;
b>>=1;
}
printf("%d",ans);
}
代码分析:根据题意和数据范围判断出用快速幂算法即可。将b的二进制数右移每次可以得到最低位最高位补零, 再跟1做&运算判断出最低位的数,若是1,再对答案累乘即可。
2.64位整数乘法
题目内容:
求 a 乘 b 对 p 取模的值。
输入格式
第一行输入整数a,第二行输入整数b,第三行输入整数p。
输出格式
输出一个整数,表示a*b mod p
的值。
数据范围
1≤a,b,p≤10^18
#include<iostream>
typedef long long LL;
using namespace std;
int main(){
LL a,b,p;
cin>>a>>b>>p;
LL ans=0;
while(b){
if(b&1) ans=(LL)(ans+a)%p;
a=(LL)a*2%p;
b>>=1;
}
cout<<ans;
}
代码分析:与第一题类似用快速幂做,唯一不同的是这里初始值为0,对符合条件的数位累加,并且这里a的倍增是2倍关系。
3.最短Hamilton路径
题目内容:
给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径。
Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰好一次。
输入格式
第一行输入整数 n。
接下来 n 行每行 n 个整数,其中第 i 行第 j 个整数表示点 i 到 j 的距离(记为 a[i,j])。
对于任意的 x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]≥a[x,z]。
输出格式
输出一个整数,表示最短 Hamilton 路径的长度。
数据范围
1≤n≤20
0≤a[i,j]≤10^7
思路:首先最容易想到暴力枚举,通过dfs求出0-n-1全排列,再对n个点路径累加求出最短路径,但根据数据范围可以发现计算量过大,复杂度会到o(n*n!)。因此转换思路,考虑dp,用状态压缩dp,代码如下:
#include<iostream>
#include<cstring>
using namespace std;
int dp[1<<20][20],w[20][20];
int main(){
int n;cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>w[i][j];
memset(dp,0x3f,sizeof dp);
dp[1][0]=0;
for(int i=0;i<1<<n;i++){
for(int j=0;j<n;j++){
if(i>>j&1){//如果第j位可以到
for(int k=0;k<n;k++){
if((i-(1<<j))>>k&1){
dp[i][j]=min(dp[i][j],dp[i-(1<<j)][k]+w[k][j]);//状态转移
}
}
}
}
}
cout<<dp[(1<<n)-1][n-1];
}
代码分析:对于n个点,一共有2^n种状态,对每个状态中1表示可以走到该点,0则不行,再对n个位置枚举,对每个符合条件位置状态转移,最后输出走到n-1位置时的最小权值和。
4.起床困难综合症
题目内容:
21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争通过研究相关文献,他找到了该病的发病原因: 在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。 正是由于 drd 的活动,起床困难综合症愈演愈烈, 以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由 n 扇防御门组成。每扇防御门包括一个运算 op 和一个参数 t,其中运算一定是 OR,XOR,AND 中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为 x,则其通过这扇防御门后攻击力将变为 x op t。最终 drd 受到的伤害为对方初始攻击力 x 依次经过所有 n 扇防御门后转变得到的攻击力。由于 atm 水平有限,他的初始攻击力只能为 0 到 m 之间的一个整数(即他的初始攻击力只能在 0,1,…,m 中任选,但在通过防御门之后的攻击力不受 m 的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。
输入格式
第 1 行包含 2 个整数,依次为 n,m,表示 drd 有 n 扇防御门,atm 的初始攻击力为 0 到 m 之间的整数。
接下来 n 行,依次表示每一扇防御门。每行包括一个字符串 op 和一个非负整数 t,两者由一个空格隔开,且 op 在前,t 在后,op 表示该防御门所对应的操作,t 表示对应的参数。
输出格式
输出一个整数,表示 atm 的一次攻击最多使 drd 受到多少伤害。
#include<iostream>
using namespace std;
typedef pair<string,int>PII;
#define x first
#define y second
const int N=1e5+10;
PII a[N];
int n,m;
int calc(int bit,int num){
for(int i=0;i<n;i++){
int f=(a[i].y>>bit)&1;//取第bit位二进制数
if(a[i].x=="AND") num&=f;
else if(a[i].x=="OR") num|=f;
else num^=f;
}
return num;
}
int main(){
cin>>n>>m;
for(int i=0;i<n;i++) cin>>a[i].x>>a[i].second;
int val=0,ans=0;
for(int bit=30;bit>=0;bit--){
int res=calc(bit,0),res0=calc(bit,1);
if(val+(1<<bit)<=m&&res==0&&res0==1){//四种情况(0 0,0 1,1 0,1 1只有0,1时可以填1,其余情况填0最优)
val+=1<<bit;ans+=res0<<bit;
}
else ans+=res<<bit;
}
cout<<ans;
}
代码分析:根据题意可以知道从0-m中选数经过一系列位运算使得最终答案最大,那么可以设从0-m中选数x,对x的二进制数位进行枚举,根据题意m最大到10^9,因此二进制位大概在30位左右,对于x的每一位填0或填1,对每一位进行位运算得到的结果讨论,得出若满足:
1.若填入的数为1,则1<<bit累加后不能超过m。
2.对0,1分别进行位运算后仍为0,1。(解释:一共四种情况(0 0,0 1,1 0,1 1),除0 1之外的所有情况,填0最优)
则bit位填1,否则填0。最终如果x的每一位确定后,ans也可以确定。