
网络
文章平均质量分 90
AGI-杠哥
这个作者很懒,什么都没留下…
展开
-
电力知识图谱与大模型的结合:从构建到行业应用的深度解析
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了解如何从零构建电力知识图谱,并利用大模型实现更智能、更高效的行业应用。原创 2024-12-22 17:05:45 · 982 阅读 · 0 评论 -
大模型(LLM)和智能体(Agent)有什么区别?
大模型(Large Language Models, LLMs)和智能体(Agent)虽然在某些应用场景中有交集,但它们的概念、功能和技术实现上有显著的区别。随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。原创 2024-12-22 17:04:49 · 1021 阅读 · 0 评论 -
大模型医疗项目实战:AI问答,将是患者接触医疗服务的主要方式
在过去的十几年中,搜索引擎(特别是百度)在医疗行业的地位举足轻重。患者常通过搜索引擎查询健康信息、了解疾病症状,进而找到合适的医疗服务提供者并预约就诊。与非搜索用户相比,搜索引擎使医疗网站的访问量增加了两倍之多,而且使用移动设备搜索医疗服务的用户预约就诊的可能性更高。可见,搜索是连接患者与医疗服务的关键环节,路径越短转化率越高,当患者带着明确目的搜索时,有效的预约路径甚至能实现 100% 的转化。如今,小程序已成为患者访问网页、开启医疗服务之旅的主要途径。原创 2024-12-21 15:08:35 · 683 阅读 · 0 评论 -
什么是大模型、什么是智能体,一文读懂大模型、智能体与应用场景,非常详细
人工智能(AI)的发展,正以前所未有的速度重塑我们的世界。从能与人对话的大语言模型到自动驾驶、精准医疗,AI 的背后究竟隐藏着怎样的技术奥秘?本篇文章将为您深度剖析一套先进的 AI 技术架构,从基础设施到应用层,每一层都充满了惊喜和启发。读完本文,您不仅能看懂 AI 的底层逻辑,还能掌握其对各行业变革的潜力与方向。一、基础设施层:AI 技术的坚实地基基础设施层是 AI 技术架构的“地基”,为整个系统提供计算能力和存储保障。没有强大的基础设施,复杂的 AI 模型和应用无法落地。原创 2024-12-21 15:06:11 · 1219 阅读 · 0 评论 -
【大模型知识库问答系统实战】基于大语言模型构建物流行业知识问答系统:从理论到实践
物流行业的高效运转离不开知识的精准管理和快速响应。然而,面对客户咨询高频、员工内部知识分散等问题,传统规则驱动的系统往往显得力不从心。如何借助大语言模型(LLM)打造一套智能知识问答系统,成为提升物流企业竞争力的关键所在。本文以物流行业为背景,从系统架构、实际案例和代码实现的角度,为你详细解读如何构建一套基于大语言模型的高效知识问答系统。一、物流行业的需求背景客户咨询高频但重复性强: 客户的询问内容大多集中在诸如“包裹的最新状态是什么?”、“寄送到某地的运费是多少?”等高频但固定化的问题。原创 2024-12-21 15:05:01 · 1027 阅读 · 0 评论 -
什么是大语言模型?大型语言模型(LLM)技术深度分析 2024
大型语言模型(LLM) 为人工智能带来了所未有的推理能力,极大地扩展了机器的认知边界。它们不再仅仅是执行简单任务的工具,而是成为了人类的"智力外脑",能够提供深入的分析、创造性的解决方案和复杂的决策支持。这种推理能力的跃迁得益于LLM在理解和生成自然语言方面的巨大进步。它们能够解析复杂的文本,提取关键信息,进行逻辑推理,并生成连贯、有见地的回应。这使得LLM能够处理各种知识密集型任务,如法律分析、市场研究、科学发现等,为个人和企业提供了强大的智能支持。思维链的生成。原创 2024-12-21 15:03:11 · 806 阅读 · 0 评论 -
大模型实战:万亿赛道 !AI 服务器设计及解决方案 2024
自OpenAI的ChatGPT发布以来,生成式AI技术获得了广泛关注,一系列开创性研究成果相继发布,引领了人工智能的新一轮创新浪潮。AI大模型是生成式AI的关键底座,得益于泛化能力强、长尾数据依赖性低以及下游模型使用效率高,大模型被认为具备了“通用人工智能AGI”的雏形。相比传统AI模型,大模型的训练使用了更庞大的数据,具有更巨量的模型参数和更发散的下游应用场景,对全社会生产力和生产效率的提升、传统产业转型升级具有重大的价值潜力。原创 2024-12-21 15:02:31 · 725 阅读 · 0 评论 -
大模型面试题库大全:涵盖常见问题及精准解答,背完LLM八股文,一个月成功转入大模型研发
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:请简述什么是大模型,以及它与传统模型的主要区别是什么?回答:大模型通常指的是参数数量巨大的深度学习模型,如GPT系列。它们与传统模型的主要区别在于规模:大模型拥有更多的参数和更复杂的结构,从而能够处理更复杂、更广泛的任务。此外,大模型通常需要更多的数据和计算资源进行训练和推理。谈谈你对Transformer模型的理解,以及它在自然语言处理中的应用。原创 2024-12-20 17:44:44 · 486 阅读 · 0 评论 -
大模型面试题库大全:涵盖常见问题及精准解答,背完LLM八股文,一个月成功转入大模型研发
大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:请简述什么是大模型,以及它与传统模型的主要区别是什么?回答:大模型通常指的是参数数量巨大的深度学习模型,如GPT系列。它们与传统模型的主要区别在于规模:大模型拥有更多的参数和更复杂的结构,从而能够处理更复杂、更广泛的任务。此外,大模型通常需要更多的数据和计算资源进行训练和推理。谈谈你对Transformer模型的理解,以及它在自然语言处理中的应用。原创 2024-12-20 17:42:43 · 550 阅读 · 0 评论 -
大模型入门指南:不可错过的12本必读书籍,非常详细收藏我这一篇就够了
敢不敢用一年时间读完这12本书,模型入门必看的12本书!!第一本:《基于GPT-3,ChatGPT,GPT-4等Transformer架构的自然语言处理》主要内容了解用于解决复杂语言问题的新技术。将GPT-3与T5、GPT-2和基于BERT的Transformer的结果进行对比使用TensorFlow、PyTorch和GPT-3执行情感分析、文本摘要、非正式语言分析、机器翻译等任务了解ViT和CLIP如何标注图像(包括模糊化),并使用DALL-E从文本生成图像。原创 2024-12-20 17:40:23 · 657 阅读 · 0 评论 -
AI + 知识图谱 = GraphRAG:为企业构建更精准的聊天机器人
自从企业开始采用检索增强生成(Retrieval Augmented Generation,RAG)以来,这项技术已经取得了显著进步。正如我们所见,各组织不断探索创新方法以挖掘更多价值。尽管检索过程和搜索算法变得更快、更高效,但在处理复杂任务(如多步逻辑推导)或回答需要将分散信息点连接起来的复杂问题时,它们仍然存在局限性。让我们通过一个真实的例子来进一步探讨这个主题:“1492 年圣诞节沉没的哥伦布船叫什么名字?”一个标准的 RAG 系统通常会遵循以下步骤:识别事件 :查找有关哥伦布船只及其沉船的信息。确认原创 2024-12-20 17:39:14 · 970 阅读 · 0 评论 -
探索GraphRAG:蚂蚁集团、北大等机构的知识图谱增强大模型研究综述
前言最近,蚂蚁集团联合各所名校发表了关于GraphRAG的论文综述。全文对图谱检索增强生成(GraphRAG)进行了全面综述,GraphRAG是一种利用外部结构化知识图谱来提高语言模型的上下文理解能力并生成更明智的响应的框架。GraphRAG通过整合知识图中的结构化信息,解决了传统检索增强生成(RAG)的局限性。GraphRAG工作流程包含三个阶段:图索引、图检索和图增强生成。本文详细介绍了每个阶段的各种技术,包括图数据选择、索引方法、检索模型、检索范式和生成增强策略。原创 2024-12-20 17:35:23 · 316 阅读 · 0 评论 -
RAGFlow技术揭秘:打造高效医院医疗问诊助手的五大步骤
使用Huggingface上的开源医疗数据集,借助 RAGFlow 搭建自己的本地医疗问诊助手。**纯本地构建:本地知识库+本地向量化模型+本地大模型原理:RAGFlow是一个基于对文档深入理解的开源 RAG(检索增强生成)引擎。它的作用是可以让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成答案输出。原创 2024-12-20 17:34:02 · 1041 阅读 · 0 评论 -
大模型学习方法之——大模型技术学习路线,这你学不会我退出IT界!
技术学习无非涵盖三个方面,理论,实践和应用**”**大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。技术的意义在于解决问题01大模型技术学习的理论,实践与应用学习大模型技术需要系统性的理论基础,实践技能以及最新的研究进展和应用场景。原创 2024-12-20 17:32:31 · 542 阅读 · 0 评论 -
如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路,真的不难!
前言AI产品经理作为一个新兴且热门的职业,不仅需要具备传统产品经理的能力,还需要对AI技术有深入的理解和应用。本学习路线旨在帮助有志于成为AI产品经理的学习者系统地掌握所需的知识和技能。前排提示,文末有大模型AGI-CSDN独家资料包哦!学习路线概览1、基础知识储备了解人工智能的基本概念、原理和应用领域。掌握计算机科学的基础知识,如数据结构、算法、操作系统等。学习编程语言,如Python,这是AI领域广泛使用的语言。2、AI技术深入理解。原创 2024-12-20 17:31:15 · 755 阅读 · 0 评论 -
如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路,真的不难!
前言AI产品经理作为一个新兴且热门的职业,不仅需要具备传统产品经理的能力,还需要对AI技术有深入的理解和应用。本学习路线旨在帮助有志于成为AI产品经理的学习者系统地掌握所需的知识和技能。前排提示,文末有大模型AGI-CSDN独家资料包哦!学习路线概览1、基础知识储备了解人工智能的基本概念、原理和应用领域。掌握计算机科学的基础知识,如数据结构、算法、操作系统等。学习编程语言,如Python,这是AI领域广泛使用的语言。2、AI技术深入理解。原创 2024-12-20 17:30:29 · 701 阅读 · 0 评论 -
如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路,真的不难!
前言AI产品经理作为一个新兴且热门的职业,不仅需要具备传统产品经理的能力,还需要对AI技术有深入的理解和应用。本学习路线旨在帮助有志于成为AI产品经理的学习者系统地掌握所需的知识和技能。前排提示,文末有大模型AGI-CSDN独家资料包哦!学习路线概览1、基础知识储备了解人工智能的基本概念、原理和应用领域。掌握计算机科学的基础知识,如数据结构、算法、操作系统等。学习编程语言,如Python,这是AI领域广泛使用的语言。2、AI技术深入理解。原创 2024-12-20 17:29:28 · 799 阅读 · 0 评论 -
李飞飞团队创新:新多模态模型,指令与情绪全能解读
人类的沟通交流充满了多模态的信息。为了与他人进行有效沟通,我们既使用言语语言,也使用身体语言,比如手势、面部表情、身体姿势和情绪表达。因此,为了理解和生成人类动作,理解这些多模态的行为至关重要,而且这一研究方向最近受到的关注也越来越多。而多模态语言模型看起来颇具潜力,可将多种模态的不同任务统一在一个框架下。近日,斯坦福大学李飞飞、Gordon Wetzstein 和 Ehsan Adeli 领导的一个团队也在这方面做出了贡献,探索了语音 - 文本 - 动作生成任务。原创 2024-12-20 17:28:44 · 883 阅读 · 0 评论 -
kimi高级用法教程,让你从小白成为AI应用大师~
今天我对kimi常见的高级用法进行了总结,希望可以帮助到大家~,kimi功能多多,越用越爽,不愧为当红AI大模型。首先我们需要打开kimi的官网:https://kimi.moonshot.cn/,注册登录后, 下面开始我们今天的主题~本文目录背景介绍用法一:充当无广告的智能总结搜索引擎用法二: 设置常用语,快速实现小红书爆文和短剧脚本短剧脚本效果展示小红书爆文常用语设置和效果展示用法三: 让大模型直接读取链接的内容并总结通过论文链接总结论文工作轻松拿捏各种公众号文章总结。原创 2024-12-20 17:26:44 · 3831 阅读 · 0 评论 -
人工智能学习指南:零基础起步,一篇文章带你精通大模型
01— 人工智能开发入门掌握Python基础语法,对后续学习打下坚实基础。Python编程基本语法 数据结构 函数面向对象 多任务 模块与包闭包装 饰器 迭代器Numpy矩阵运算矩阵运算 矩阵转置 矩阵求逆Scipy数值运算库Scipy基本使用 Scipy常量 Scipy稀疏矩阵Scipy图结构 Scipy空间 Scipy插值Pandas数据科学库自带数据 结构数据读取写入 数据清洗数据计算 数据合并 数据排序Matplotlib。原创 2024-12-20 17:25:39 · 926 阅读 · 0 评论 -
转行做AI大模型的人:码农、产品经理、开发,AI是少数上升的赛道!
当今的大经济环境下,AI是少数的上升赛道,虽然商业化曲折,但毕竟寄托了“全村的希望”。不少人跟随潮水的方向,转行到AI行业:深夜求职直播间里,人们问“今年AI赛道值不值得去”,小红书上不少互联网从业者分享如何转到AI产品经理。转行人有着不同面貌:那些想转行、但在风险面前迟疑的,那些下决心抛掉安稳、纵身一跃的,那些在尝试之后又返回原轨的……有人把转行看作在无数分岔路口做出最优解的战争,也有人当作临时起意的漫游。而站在浪头的,是那种并非半途跟风,而是在风口与狂热来临之前,就有勇气在黑暗中独自前行的人。原创 2024-12-20 17:19:28 · 490 阅读 · 0 评论 -
LLM框架对比选择:MaxKB、Dify、FastGPT、RagFlow【RAG+AI工作流+Agent]
1.MaxKBMaxKB = Max Knowledge Base,是一款基于 LLM 大语言模型的开源知识库问答系统,旨在成为企业的最强大脑。它能够帮助企业高效地管理知识,并提供智能问答功能。想象一下,你有一个虚拟助手,可以回答各种关于公司内部知识的问题,无论是政策、流程,还是技术文档,MaxKB 都能快速准确地给出答案:比如公司内网如何访问、如何提交视觉设计需求等等1.1 简介开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化、RAG(检索增强生成),智能问答交互体验好;原创 2024-12-20 12:56:04 · 2166 阅读 · 0 评论 -
硕士校招生进入大模型领域工作,选预训练还是SFT?
我推荐选 pretrain,理由如下:pretrain 提高工程能力,sft 提高认知能力作为校招新人,你的当务之急只有一条:提升工程代码能力!我们拆解一下两个团队所需要的技能,你判断下哪个提升代码能力更快。原创 2024-12-19 16:51:07 · 927 阅读 · 0 评论 -
大模型常见面经、领域大模型介绍、LLM应用落地、LLM入门实战系列大全
目录常见大模型介绍1.1 ChatGLM-6B 系列2.LLMs 应用BLIPBLIP2MiniGPT-4Massively Multilingual Speech (MMS,大规模多语种语音)whisperMassively Multilingual Speech (MMS,大规模多语种语音)LLaMA 衍生物模型OpenBuddyBaizePandaBiLLaLinlyChatYuan书生 · 浦语Aquila领域大模型4.1 金融领域4.2 医疗领域。原创 2024-12-19 16:50:16 · 817 阅读 · 0 评论 -
AI产品经理面试全攻略:100道详细问题与答案,一篇文章搞定
以前总说AI是未来,但现在AI就是当下。今天为大家整理了一份AI产品经理的面试题,总共100道。面试题一般是对求职者相对比较综合的考察,即使你目前无此求职意向,或者不是AI产品经理,亦可通过面试题来测试自己对AI的认知程度。具体AI产品经理100面试题如下:1.什么是机器学习?2.描述深度学习与传统机器学习的区别。3.什么是自然语言处理?4.如何评估一个机器学习模型的性能?5.什么是过拟合和欠拟合?6.请解释什么是神经网络。7.描述决策树和随机森林。8.什么是梯度下降?原创 2024-12-19 16:49:12 · 1001 阅读 · 0 评论 -
AI + 知识图谱 = GraphRAG:为企业构建更精准的聊天机器人
自从企业开始采用检索增强生成(Retrieval Augmented Generation,RAG)以来,这项技术已经取得了显著进步。正如我们所见,各组织不断探索创新方法以挖掘更多价值。尽管检索过程和搜索算法变得更快、更高效,但在处理复杂任务(如多步逻辑推导)或回答需要将分散信息点连接起来的复杂问题时,它们仍然存在局限性。让我们通过一个真实的例子来进一步探讨这个主题:“1492 年圣诞节沉没的哥伦布船叫什么名字?一个标准的 RAG 系统通常会遵循以下步骤:识别事件 :查找有关哥伦布船只及其沉船的信息。原创 2024-12-19 16:48:22 · 661 阅读 · 0 评论 -
探索GraphRAG:蚂蚁集团、北大等机构的知识图谱增强大模型研究综述
前言最近,蚂蚁集团联合各所名校发表了关于GraphRAG的论文综述。全文对图谱检索增强生成(GraphRAG)进行了全面综述,GraphRAG是一种利用外部结构化知识图谱来提高语言模型的上下文理解能力并生成更明智的响应的框架。主要结论GraphRAG通过整合知识图中的结构化信息,解决了传统检索增强生成(RAG)的局限性。GraphRAG工作流程包含三个阶段:图索引、图检索和图增强生成。本文详细介绍了每个阶段的各种技术,包括图数据选择、索引方法、检索模型、检索范式和生成增强策略。此外,本文还探讨了GraphR原创 2024-12-19 16:47:35 · 889 阅读 · 0 评论 -
调研120+模型!腾讯AI Lab联合京都大学发布多模态大语言模型最新综述
论文标题:论文链接:实时网站:引言多模态(MM)预训练研究在最近几年取得了显著进展,持续推动了各种下游任务的性能边界。然而,随着模型规模和数据集的不断扩大,传统的多模态模型在从头开始训练时会产生大量的计算成本。考虑到多模态研究处于各种模态的交集,一个合理的方法是利用现成的预训练单模态基础模型,特别强调强大的大型语言模型(LLMs)。这一策略旨在减轻训练开销并增强多模态预训练的效力,从而催生了一个新颖的领域:MM-LLMs。MM-LLMs 利用 LLMs 作为认知核心,赋予各种多模态任务能力。原创 2024-12-19 16:42:19 · 748 阅读 · 0 评论 -
【新书】《基于Transformers和扩散模型的生成式人工智能实战》
书籍简介通过这本实用的操作手册,学习使用生成式人工智能技术创建新颖的文本、图像、音频甚至音乐。读者将理解最先进的生成模型是如何工作的,如何对其进行微调和适应以满足个人需求,以及如何结合现有的构建块创造新的模型和跨领域的创意应用。本书从理论概念介绍开始,紧接着是指导性的实践应用,包含丰富的代码示例和易于理解的插图。你将学习如何使用开源库来利用变换器和扩散模型,进行代码探索,并研究若干现有项目,以帮助指导你的工作。构建和定制能够生成文本和图像的模型探索使用预训练模型与微调自定义模型之间的权衡。原创 2024-12-19 16:41:34 · 788 阅读 · 0 评论 -
Github上这个大语言模型学习路线笔记,涵盖了大语言模型的所需的基础知识学习_AI大模型学习路线
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。原创 2024-12-19 16:38:08 · 738 阅读 · 0 评论 -
阿里大模型面试原题:大模型训练为什么用梯度下降而不是收敛速度更快的牛顿法?
问题大模型训练为什么用梯度下降而不是收敛速度更快的牛顿法?答案梯度下降是基于泰勒展开一阶偏微分的优化方法, 而牛顿法则是基于泰勒展开二阶偏微分的方法。理论上牛顿法的收敛速度要比梯度下降要快的多,那为什么大模型和机器学习都采用梯度下降这种比较慢的优化方法呢?原因有三:性能问题从迭代的次数来看, 牛顿法确实需要更少的迭代次数, 因为牛顿法是直接算出下一个极值点在哪里。原创 2024-12-19 16:37:19 · 489 阅读 · 0 评论 -
NLP面试官:“Attention为什么要除以根号d” 算法女生这么回答当场想发 offer
题目:Attention 的计算公式中 为什么要除以?这个题目可以说是 NLP 面试中一个高频出现的问题,基本上问到 Attention 或者 Transformers 的时候都会问。这是个好题目,我作为面试官的时候也经常问,因为很快能了解到面试同学的数学功底怎么样。如果你是 NLP 学生或者从业者,不妨先试着回答一下。如果有更好的答案欢迎交流。最基本的答案这个问题在《Attention is All Your Need》的原始论文中是给出了一个粗略的答案的。原创 2024-12-19 16:36:26 · 820 阅读 · 0 评论 -
AI应用深度解析:分类、现状、商业化与未来趋势全梳理,附34页PDF下载
AI应用是指基于人工智能技术开发的各种软件、工具和服务,旨在通过模拟人类的智能行为来提升生产效率、优化用户体验或创造新的商业模式。AI应用可以分为多个类别,涵盖文本编辑、图像处理、语音识别、智能助手等多个领域,并且已经在多个行业中得到了广泛应用。原创 2024-12-19 16:33:47 · 456 阅读 · 0 评论 -
如何成为一名成功的AI产品经理:从传统产品到AI产品的转型之路,真的不难!
前言AI产品经理作为一个新兴且热门的职业,不仅需要具备传统产品经理的能力,还需要对AI技术有深入的理解和应用。本学习路线旨在帮助有志于成为AI产品经理的学习者系统地掌握所需的知识和技能。前排提示,文末有大模型AGI-CSDN独家资料包哦!学习路线概览1、基础知识储备了解人工智能的基本概念、原理和应用领域。掌握计算机科学的基础知识,如数据结构、算法、操作系统等。学习编程语言,如Python,这是AI领域广泛使用的语言。2、AI技术深入理解。原创 2024-12-19 16:32:27 · 388 阅读 · 0 评论