智能优化算法(三):遗传算法

1.问题描述

\quad 在利用启发式算法求解问题时,我们常常需要应用遗传算法解决函数最值问题,也是遗传算法在数学中最常应用到的方面,遗传算法的思想是通过种群的迭代最后求解出某一函数的最值 (最大值/最小值) 或者极值 (极大值与极小值),具体的问题描述与见下文。
\quad 利用二进制编码的遗传算来求解函数优化问题:
max ⁡ f ( x ) = x + 10 sin ⁡ ( 5 x ) + 7 cos ⁡ ( 4 x ) s.t.x ∈ [ 0 , 10 ] \max f(x)=x+10\sin(5x)+7\cos(4x)\quad\text{s.t.x}\in[0,10] maxf(x)=x+10sin(5x)+7cos(4x)s.t.x[0,10]

2.遗传算法

2.1.算法概述

\quad 遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传学原理的优化算法。它模仿了生物进化过程,通过模拟自然选择、交叉、变异等遗传操作,逐步优化问题的解。遗传算法是进化算法的一种,广泛应用于优化问题、机器学习、人工智能等领域。
\quad 其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。
\quad 遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
在这里插入图片描述

2.2.编码操作

\quad 遗传算法的解空间与编码空间的可能需要进行适当的转换,也就是说适值计算需要在解空间内进行,而遗传运算是对编码空间操作的,所以要进行两个空间的转换,单体的数值的转化如图1所示,常常利用二进制编码与十进制编码的转化方法,同时整体种群的变异,交叉等操作都需要在二进制编码上进行,如图2所示。
在这里插入图片描述
在这里插入图片描述

2.3.选择操作

\quad 在遗传算法每一代的遗传方面,就涉及到了选择操作,选择概率的计算方法,按比例的适应度函数、基于排序的适应度计算等,其中选择算法有轮盘赌选择、随机遍历抽样、截断选择、锦标赛选择等方法,我们最常利用轮盘赌方法来进行选择操作。
\quad 轮盘赌选择(Roulette Wheel Selection)是一种遗传算法中常用的选择方法。它的基本思想是根据个体的适应度值来决定其被选择的概率,类似于在轮盘上抽签。首先,我们计算种群中每个个体的适应度值,适应度值反映了个体在当前问题中的表现。然后,将这些适应度值归一化,转换为每个个体的选择概率,确保所有个体的选择概率加起来等于1。接着,计算累积概率(即累积适应度值),每个个体的累积概率表示从第一个个体到当前个体的总选择概率。然后在选择个体时,生成一个0到1之间的随机数r,然后通过比较这个随机数与累积概率,确定选择的个体。如果随机数r小于某个累积概率CDF_i,则选择对应的第i个个体。这样,每个个体被选择的概率与其适应度成正比,适应度越高的个体被选择的概率越大。
在这里插入图片描述
在这里插入图片描述

2.4.交叉操作

\quad 交叉(Crossover)是指在遗传算法中,一对父代个体发生染色体交叉交换的操作,交叉发生的概率叫做交叉率,通常用Pc表示,常设定为0.8至0.9。根据编码方式的不同,交叉操作有多种形式:对于二进制和整数编码,常见的交叉方法包括单切点交叉、双切点交叉和均匀交叉;对于顺序编码,则使用部分映射交叉、顺序交叉和循环交叉;对于实数编码,则包括离散交叉和线性重组等方法。

\quad 其中,单切点交叉(Single-Point Crossover) 是最基础的一种交叉方法,适用于二进制和整数编码。在单切点交叉中,首先在父代个体的基因序列中随机选择一个切点,然后将两个父代个体在该切点处分开,交换彼此的基因部分,以生成新的子代个体。例如,假设有两个父代个体A和B,切点选择在第k位,那么子代个体C和D的基因序列将是父代个体A和B在切点k处分开的部分进行交换,从而生成新的个体。单切点交叉的优点是实现简单,能够有效地在基因之间进行信息重组,促进解空间的探索。
在这里插入图片描述

2.5.变异操作

\quad 变异率(Mutation Rate),用Pm表示,是遗传算法中控制染色体上基因发生变异的概率,通常设置得较小,一般在0.05以下,以维持种群的稳定性。变异操作首先需要根据变异率Pm,随机选择NPPm个个体进行变异,其中NP是种群大小。对于每个被选中的个体,再随机选择round(LPm)个基因进行变异,将这些基因的值进行取反,即0变成1,1变成0。最终,将变异后的个体更新到种群中,并保留最优个体fBest在新种群中,以确保最优解不会丢失。这种变异操作通过引入基因的多样性,帮助算法避免陷入局部最优解,同时保持种群的优秀特征。
在这里插入图片描述

2.6.算法流程

\quad 遗传算法的基本流程包括几个关键步骤。首先,生成初始种群,通过随机方式创建一组个体。接下来,计算每个个体的适应度值,评估其在目标函数中的表现。然后,根据适应度值选择个体进入下一代,常用的选择方法包括轮盘赌选择和锦标赛选择。选择后的个体进行交叉操作,模拟基因重组,生成新的子代个体。接着,对新生成的个体进行变异操作,引入基因变异,以增加种群的多样性。更新种群时,将新个体与旧种群结合,可能需要替换一些旧个体,并保留最优个体以确保优秀基因的传递。最后,检查是否满足终止条件,如达到最大代数或适应度收敛,若满足条件则结束算法,输出当前代中最优个体作为近似解。这些步骤帮助遗传算法逐步优化解的质量,并在复杂的解空间中寻找最优解。
在这里插入图片描述

3.算法实现

3.1.MATLAB代码实现

%%%%%%%%%%%%%%%%%%%%标准遗传算法求函数极值%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%初始化参数%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all; %清除所有变量
close all; %清图
clc; %清屏
tic;
NP=100; %种群数量
L=20; %二进制数串长度
Pc=0.8; %交叉率
Pm=0.7; %变异率
G=100; %最大遗传代数
Xs=10; %上限
Xx=0; %下限
%编码方式采用二进制编码方法
f=randi([0,1],NP,L); %随机获得初始种群
%%%%%%%%%%%%%%%%%%%%%%%%%遗传算法循环%%%%%%%%%%%%%%%%%%%%%%%%
for k=1:G
%%%%%%%%%%%%将二进制解码为定义域范围内十进制%%%%%%%%%%%%%%
for i=1:NP
    U=f(i,:);
    m=0;
    for j=1:L
        %将二进制编码转化为十进制
        m=U(j)*2^(j-1)+m;
    end
        %将解码结果映射到[Xx,Xs]区间
        x(i)=Xx+m*(Xs-Xx)/(2^L-1);
        Fit(i)= func2(x(i));%带入值进行计算
end

maxFit=max(Fit); %最大值
minFit=min(Fit); %最小值
rr=find(Fit==maxFit);%获取最优结果对应的索引
fBest=f(rr(1,1),:); %历代最优个体
xBest=x(rr(1,1));%获取最好的结果
Fit=(Fit-minFit)/(maxFit-minFit); %归一化适应度值
%%%%%%%%%%%%%%%%%%基于轮盘赌的复制操作%%%%%%%%%%%%%%%%%%%
sum_Fit=sum(Fit);
fitvalue=Fit./sum_Fit;%将适应度转化为被选择的概率
fitvalue=cumsum(fitvalue);%变成当前被选择时的累计概率
ms=sort(rand(NP,1));%生成随机数
fiti=1;newi=1;
%轮盘赌选择个体
while newi<=NP
    if (ms(newi))<fitvalue(fiti)
        nf(newi,:)=f(fiti,:);
        newi=newi+1;
    else
        fiti=fiti+1;
    end
end
%%%%%%%%%%%%%%%%%%%%%%基于概率的交叉操作%%%%%%%%%%%%%%%%%%
for i=1:2:NP
    %简单地随机交叉操作
    p=rand;
    %随机生成一个p如果p小于pc,执行交叉操作,反正不执行。
    if p<Pc
        %随机选择交叉的位置
        q=randi([0,1],1,L);
        for j=1:L
            if q(j)==1;
                temp=nf(i+1,j);
                nf(i+1,j)=nf(i,j);
                nf(i,j)=temp;
            end
        end
    end
end
%%%%%%%%%%%%%%%%%%%基于概率的变异操作%%%%%%%%%%%%%%%%%%%%%%%
i=1;
    while i<=round(NP*Pm)%随机选择NP*Pm个个体进行变异
        h=randi([1,NP],1,1); %随机选取一个需要变异的染色体
        for j=1:round(L*Pm)
            g=randi([1,L],1,1); %随机需要变异的基因数
            nf(h,g)=~nf(h,g);%0,1的位置取反
        end
        i=i+1;
    end
    f=nf;
    f(1,:)=fBest; %保留最优个体在新种群中
    trace(k)=maxFit; %历代最优适应度
end
xBest; %最优个体
figure
plot(trace)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
print(gcf,'C:\Users\Zeng Zhong Yan\Desktop\GA','-dpng','-r600')

在这里插入图片描述

3.2.Python代码实现

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Times New Roman'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 定义优化的目标函数
def func1(x):
    return x + 10 * np.sin(5 * x) + 7 * np.cos(4 * x)

# 初始化参数
NP = 100  # 种群大小
L = 20  # 二进制字符串的长度
Pc = 0.8  # 交叉率
Pm = 0.9  # 变异率
G = 50  # 最大代数
Xs = 10  # 上界
Xx = 0  # 下界

# 生成初始种群
f = np.random.randint(0, 2, (NP, L))

# 遗传算法循环
trace = np.zeros(G)
for k in range(G):
    # 将二进制字符串解码为十进制数
    x = np.zeros(NP)
    for i in range(NP):
        U = f[i, :]
        m = sum(U[j] * 2**j for j in range(L))
        x[i] = Xx + m * (Xs - Xx) / (2**L - 1)
    
    # 计算每个个体的适应度
    Fit = np.array([func1(xi) for xi in x])
    maxFit = np.max(Fit)
    minFit = np.min(Fit)
    rr = np.where(Fit == maxFit)[0]
    fBest = f[rr[0], :]  # 记录当前代的最优个体
    xBest = x[rr[0]]
    
    # 归一化适应度值
    Fit = (Fit - minFit) / (maxFit - minFit)
    
    # 轮盘赌选择
    sum_Fit = np.sum(Fit)
    fitvalue = Fit / sum_Fit
    fitvalue = np.cumsum(fitvalue)  # 计算累积适应度值
    ms = np.sort(np.random.rand(NP))  # 生成并排序随机数
    new_population = np.zeros_like(f)
    fiti = 0
    newi = 0
    while newi < NP:
        if ms[newi] < fitvalue[fiti]:
            new_population[newi, :] = f[fiti, :]
            newi += 1
        else:
            fiti += 1
    
    # 交叉操作
    for i in range(0, NP, 2):
        if np.random.rand() < Pc:
            q = np.random.randint(0, 2, L)
            for j in range(L):
                if q[j] == 1:
                    new_population[i, j], new_population[i+1, j] = new_population[i+1, j], new_population[i, j]
    
    # 变异操作
    for i in range(round(NP * Pm)):
        h = np.random.randint(0, NP)
        for j in range(round(L * Pm)):
            g = np.random.randint(0, L)
            new_population[h, g] = 1 - new_population[h, g]
    
    f = new_population
    f[0, :] = fBest  # 保留最优个体在新种群中
    trace[k] = maxFit  # 记录每代的最优适应度值

print("最优个体:", xBest)

# 绘制适应度进化曲线
plt.plot(trace)
plt.xlabel('The number of iterations',fontsize=14)
plt.ylabel('The value of the objective function',fontsize=14)
plt.title('Fitness Evolution Curve ',fontsize=18)
plt.savefig('GA.svg', dpi=600,bbox_inches='tight')
plt.show()

在这里插入图片描述

4.参考文献

[1]https://blog.csdn.net/LOVEmy134611/article/details/111639624
[2]https://blog.csdn.net/zyx_bx/article/details/115188782
[3]https://baike.baidu.com/item/
[4]https://chatgpt.com/
  • 28
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
内含教学ppt以及matlab实现代码遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

温柔济沧海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值