为什么大部分浮点数在计算机中是不准确的

首先我们要搞清楚什么是浮点数呢,浮点数就是代表在计算机中输出的小数类型,一般用float、double类型输出。

给大家举个例子,当我们在敲入代码

//定义两个浮点型数据

double a1 = 0.1;

double a2 = 4.6;

//输出数据

System.out.print(a1+a2);

我们看到运行结果是一个9循环小数的值4.6999999999999

而我们在计算器中计算这两个数的结果是4.7

因为在计算机中是用二进制进行存储的,而我们平常使用的是十进制。所以就会导致在计算机中精度运算不准确。

我们先了解一下二进制与十进制的相互转换。一般情况下,二进制转十进制使用的是按权相加法。十进制转二进制使用的是除2取余。给大家先示范一组

二进制转十进制:

1    0     1    0    1

2^4  2^3   2^2  2^1  2^0

16   8     4    2    1

得出的结果就是16+4+1=21

十进制转二进制:

21 / 2 = 10 (1)  10 / 2 = 5 (0)  5 / 2 = 2 (1)  2 / 2 = 1 (0)  1 / 2 = 0 (1)

得出的结果是从下往上数余数10101

上面的转换是整数之间的转换,那么小数之间的转换是如何转换的呢

十进制小数转二进制小数首先是整数转整数,小数转小数。小数部分使用乘2取整数位,按顺序排列,结果为零点几就输出0,结果为一点几就输出1,直到结果为1.0(若最后的结果又乘回到最原始的小数,那么这个小数就是一个循环小数)比如我们要转2.25这个小数,首先进行整数部分的转换 2 / 2 = 1 (0) / 1 / 2 = 0 (1)

小数部分转换 0.25*2 = 0.5 /  0.5*2 = 1,结果就为10.01

我们现在了解了在计算机中是如何储存数据的,现在我们回归到起初的例子

我们来看4.7这个十进制数转换为二进制数是什么样的

整数部分 4 / 2 = 2 (0)  /   2 / 2 = 1 (0)    /  1 / 2 = 0 (1)  

小数部分 0.7*2=1.4 (1)  0.4*2=0.8(0)  0.8*2=1.6(1)  0.6*2=1.2(1)  0.2*2=0.4(0)......

小数部分就会陷入无限循环中结果就变成了100.101100110011......

计算机在存储小数时是有长度限制的,所以会截取部分小数进行存储,所以计算机存储的数值只能是个大概的值,而不是精确的值。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值