首先我们要搞清楚什么是浮点数呢,浮点数就是代表在计算机中输出的小数类型,一般用float、double类型输出。
给大家举个例子,当我们在敲入代码
//定义两个浮点型数据
double a1 = 0.1;
double a2 = 4.6;
//输出数据
System.out.print(a1+a2);
我们看到运行结果是一个9循环小数的值4.6999999999999
而我们在计算器中计算这两个数的结果是4.7
因为在计算机中是用二进制进行存储的,而我们平常使用的是十进制。所以就会导致在计算机中精度运算不准确。
我们先了解一下二进制与十进制的相互转换。一般情况下,二进制转十进制使用的是按权相加法。十进制转二进制使用的是除2取余。给大家先示范一组
二进制转十进制:
1 0 1 0 1
2^4 2^3 2^2 2^1 2^0
16 8 4 2 1
得出的结果就是16+4+1=21
十进制转二进制:
21 / 2 = 10 (1) 10 / 2 = 5 (0) 5 / 2 = 2 (1) 2 / 2 = 1 (0) 1 / 2 = 0 (1)
得出的结果是从下往上数余数10101
上面的转换是整数之间的转换,那么小数之间的转换是如何转换的呢
十进制小数转二进制小数首先是整数转整数,小数转小数。小数部分使用乘2取整数位,按顺序排列,结果为零点几就输出0,结果为一点几就输出1,直到结果为1.0(若最后的结果又乘回到最原始的小数,那么这个小数就是一个循环小数)比如我们要转2.25这个小数,首先进行整数部分的转换 2 / 2 = 1 (0) / 1 / 2 = 0 (1)
小数部分转换 0.25*2 = 0.5 / 0.5*2 = 1,结果就为10.01
我们现在了解了在计算机中是如何储存数据的,现在我们回归到起初的例子
我们来看4.7这个十进制数转换为二进制数是什么样的
整数部分 4 / 2 = 2 (0) / 2 / 2 = 1 (0) / 1 / 2 = 0 (1)
小数部分 0.7*2=1.4 (1) 0.4*2=0.8(0) 0.8*2=1.6(1) 0.6*2=1.2(1) 0.2*2=0.4(0)......
小数部分就会陷入无限循环中结果就变成了100.101100110011......
计算机在存储小数时是有长度限制的,所以会截取部分小数进行存储,所以计算机存储的数值只能是个大概的值,而不是精确的值。