Volrecon(CVPR2023)自制数据集记录

1 使用colmap进行稀疏重建

参考这篇文章【colmap】超详细,基于colmap的多视图三维重建实验_colmap使用教程-CSDN博客

2 稀疏重建后的准备工作

存放图片的文件夹命名为“images”;存放colmap生成的bin文件夹命名为“sparse”
images和sparse存放在新建的CUSTOM文件夹下,CUSTOM放在项目文件夹下。

在命令行中输入指定folder的路径为CUSTOM

python colmap_input.py --folder /path/to/yourfile/Tian/CUSTOM

报错:numpy版本太高
重新下载1.19.3版本numpy

再次运行python colmap_input.py --folder /path/to/yourfile/Tian/CUSTOM

发现CUSTOM文件夹下面有了pair.txt文件

3 开始训练

bash script/eval_general.sh

报错,numpy版本太低了,重新下载1.23,再次运行bash

报错:FileNotFoundError: [Errno 2] No such file or directory: './your/path/Tian/CUSTOM/general/pair.txt'

(这一步要改的东西好多,改了三天才弄好)
首先要先弄好文件路径,项目文件夹(我的是Tian)下面放CUSTOM
 

CUSTOM
├──scene_1(我只有一个场景,所以CUSTOM下只有一个场景文件夹,文件夹结构如下)
      ├── images                 
      │   ├── 00000000.jpg       
      │   ├── 00000001.jpg       
      │   └── ...                
      ├── cams                   
      │   ├── 00000000_cam.txt   
      │   ├── 00000001_cam.txt   
      │   └── ...                
      └── pair.txt(可以手动把生成的pair.txt放进来)  

这个构造后,在eval_general.sh脚本中修改自己的地址

DATASET="/your/path/Tian/CUSTOM"

LOAD_CKPT="checkpoints/epoch=15-step=193199.ckpt" 

OUT_DIR="/your/path/Tian/outputsate"

python main.py --extract_geometry --test_general \
--test_n_view 5 --test_ray_num 200 --volume_reso 24 \(这个可以自己设置)
--test_dir=$DATASET --load_ckpt=$LOAD_CKPT --out_dir=$OUT_DIR $@

main函数的代码拼接部分也需要修改

else:
            for scan in ["scene_1"]:
                #这个有改动,原来是general
                
                dataset_tmp = GeneralFit(root_dir=args.test_dir, 
                                    scan_id=scan, 
                                    n_views=args.test_n_view)
               

else这里修改成自己的文件夹名称,就可以直接拼在CUSTOM后面,去找images了。

我只有一个场景已经可以训练了,但是如果是多个场景多个文件夹还不知道怎么训练。 

训练好之后,outputsate文件夹下多了depth.rgb.scene_1三个文件夹,渲染出来的是scene_1/images的所有图像的当前视角图像和深度图(为什么DTU只有三个呢?)

同样运行下面代码来获取网格

bash script/tsdf_fusion.sh

得到ply文件,但是在cloudcompare中这个结构很丑陋,还需要进一步清除网格,运行clean文件

报错:掩码文件错误。

因为我的自制数据集没有设置掩码,暂时无法清理网格

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值