文章目录
伟大的突破:量子力学的诞生
这令人吃惊的好消息使普朗克拼命地寻找理论上的理由!一如既往地,他聚焦于熵:
S
=
k
[
(
1
+
U
h
f
)
ln
(
1
+
U
h
f
)
−
U
h
f
ln
U
h
f
]
S = k\left[ {\left( {1 + \frac{U}{{hf}}} \right)\ln \left( {1 + \frac{U}{{hf}}} \right) - \frac{U}{{hf}}\ln \frac{U}{{hf}}} \right]
S=k[(1+hfU)ln(1+hfU)−hfUlnhfU]
这个形式的表达式应如何解释?这里事情发生了意想不到的转变.他对于玻尔兹曼关于气体原子的熵的分析的了解提供了线索,尽管普朗克自己还怀疑原子的存在性.玻尔兹曼对熵的表达式是
S
=
k
ln
W
S = k\ln W
S=klnW
其中W是对应于给定宏观变量的微观状态总数,k是玻尔兹曼常数.(实际上,这个在玻尔兹曼墓碑上的公式是普朗克第一次写上去的.)
1877年,玻尔兹曼确实分析了一个原子系统并得到了一个与普朗克发现的这个表达式非常相似的熵的表达式.玻尔兹曼的模型只允许原子具有整数倍于某一个非常微小固定能量ε.他于是发现原子的可能的状态数与给定的总能量一致,这种组合(排列组合)的分析,结合斯特林的公式 ln N ! ≅ N ln N − N \ln N!\cong N\ln N - N lnN!≅NlnN−N,给了他一个熵的表达式,最终,玻尔兹曼得到了ε的极限.
对于简谐振动的振子,相似的分析如何实施呢?再一次,玻尔兹曼的其中一个想法起作用了. 在温度T时具有平均能量U的一个振子的熵与振子被热噪音相互作用而产生的状态总数相关.1884年,玻尔兹曼已经引入了一个全体的概念:对于振子,这个全体就是具有随机状态但是相同U和T的N个振子的集合,因此在某一瞬间,整个集合将呈现单个振子在所有时间内的可能的状态.
全体就具有熵NS,其中S是单个振子的熵.全体的熵就是
N
S
=
N
k
ln
W
NS = Nk\ln W
NS=NklnW .现在,
KaTeX parse error: Undefined control sequence: \eqalign at position 2: \̲e̲q̲a̲l̲i̲g̲n̲{ & S = kN\left…
N个振子的可能的不同排列数意味着:总能量NU分配给N个振子,有多少种不同的方式?这就是W的含义.实际上,普朗克认识到,或很可能记起了玻尔兹曼的工作,W的表达式非常类似于一个众所周知的组合表达式:将M个物体分配到N个盒子里,有多少种分法,如果假设M个物体都是相同的?答案是
W
=
(
N
+
M
−
1
)
!
M
!
(
N
−
1
)
!
W = \frac{{\left( {N + M - 1} \right)!}}{{M!\left( {N - 1} \right)!}}
W=M!(N−1)!(N+M−1)!
对于N,M的大数值,使用斯特林公式
ln
N
!
≅
N
ln
N
−
N
\ln N! \cong N\ln N - N
lnN!≅NlnN−N,这变为
ln
W
=
N
[
(
1
+
M
N
)
ln
(
1
+
M
N
)
−
M
N
ln
M
N
]
\ln W = N\left[ {\left( {1 + \frac{M}{N}} \right)\ln \left( {1 + \frac{M}{N}} \right) - \frac{M}{N}\ln \frac{M}{N}} \right]
lnW=N[(1+NM)ln(1+NM)−NMlnNM]
于是,和前面的公式对比,对于普朗克而言,就有
U
h
f
=
M
N
或
N
U
=
M
h
f
\frac{U}{{hf}} = \frac{M}{N} 或 NU = Mhf
hfU=NM或NU=Mhf0
这就是说,普朗克的N个相同频率振子排列的总能量NU等于Mhf,关键地,这个熵的表达式告诉我们,这个能量是一份一份地分配到这些振子中,每一份等于hf.
也就是将总能量NU分成了M份,每一份是hf,即某一时刻,总能量NU是以离散不连续的份量hf分配给各个谐振子.熵的表达式告诉我们,能量在谐振子中的分配是离散不连续的,每一份是hf.
普朗克在看到新的实验数据后,觉得有必要修正他的曲线,在紧张地工作了2个月后,于1900年12月得到上述结论.但是他依然半信半疑,毕竟他的推导的第一部分中,辐射场中的一个谐振子的能量是经典力学的:他假设了能量的发射和吸收都是连续的.然而,他突然做了改变,使用了完全非经典力学的概念,谐振子只能一份一份地失去或得到能量.(他不认为辐射是量子化的,他将这种量子化纯粹地看作是炉壁上谐振子的一种属性).结果,尽管他的曲线的精确性被大家广泛地认可了,并且视为是量子力学的诞生,然而没有任何人,包括普朗克本人在接下来的好几年里都没有理解这一点.