【NLP】基于注意力机制的机器翻译

机器翻译

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。

为了演示方便,我们在这里使用一个很小的法语—英语数据集'fr-en-small.txt'。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。

链接: https://pan.baidu.com/s/1C6lq-8cJOwzdj3XPm4tdsw 提取码: TAEL 

1.读取和预处理数据

1.1导入库

!tar -xf d2lzh_pytorch.tar
import collections  # 导入collections模块,用于常见的数据结构操作
import os  # 导入os模块,用于操作系统相关功能
import io  # 导入io模块,用于处理IO流
import math  # 导入math模块,提供数学计算函数
import torch  # 导入PyTorch深度学习框架
from torch import nn  # 从torch中导入神经网络模块
import torch.nn.functional as F  # 导入torch.nn中的函数库
import torchtext.vocab as Vocab  # 导入torchtext中的词汇表模块
import torch.utils.data as Data  # 导入PyTorch中的数据加载模块

import sys  # 导入sys模块,用于系统相关的功能
# sys.path.append("..") 
import d2lzh_pytorch as d2l  # 导入d2lzh_pytorch模块,通常是指一个自定义工具库

1.2定义特殊符号

“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。

PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'  # 定义特殊符号,用于序列处理
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 设置环境变量CUDA_VISIBLE_DEVICES为0,指定使用的GPU设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  # 根据CUDA是否可用选择运行设备(GPU或CPU)

print(torch.__version__, device)  # 打印PyTorch版本号和当前使用的设备(GPU或CPU)

1.3辅助函数

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

1.4读取数据

在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。

将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)

max_seq_len = 7  # 定义最大序列长度为7,超过这个长度的序列将会被截断或填充

in_vocab, out_vocab, dataset = read_data(max_seq_len)
# 调用read_data函数读取数据集,并将返回的结果分别赋值给in_vocab(输入端词汇表)、out_vocab(输出端词汇表)和dataset(数据集)

dataset[0]
# 获取数据集中的第一个样本,通常是一个包含输入序列和输出序列的元组或列表,具体内容取决于数据集的结构

2.含注意力机制的编码器—解码器

2.1编码器

在编码器中,我们首先将输入语言的词索引通过词嵌入层转换为词的表征,然后将其输入到一个多层门控循环单元中。PyTorch的nn.GRU实例在前向计算后会分别返回输出和最终时间步的多层隐藏状态。这里的“输出”是指最后一层隐藏层在每个时间步的隐藏状态,并不包括输出层的计算。在注意力机制中,这些输出被用作键项和值项。

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

下面我们来创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
# 创建一个Encoder对象,参数包括:vocab_size表示词汇表大小为10,embed_size表示嵌入维度为8,num_hiddens表示隐藏单元个数为16,num_layers表示堆叠的层数为2

output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
# 调用encoder对象,输入一个大小为(4, 7)的全零张量作为输入数据,同时调用encoder.begin_state()获取初始状态
# 输出结果为output和state,其中output是Encoder的输出张量,state是Encoder最终的隐藏状态
# 注意:对于GRU,state是一个张量h;而对于LSTM,state是一个元组(h, c),分别表示隐藏状态和细胞状态

output.shape, state.shape
# 打印输出张量output的形状和隐藏状态state的形状

2.2注意力机制

attention_model:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

在下面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

seq_len, batch_size, num_hiddens = 10, 4, 8
# 定义序列长度为10,批量大小为4,隐藏单元数为8

model = attention_model(2*num_hiddens, 10)
# 创建一个attention_model对象,参数为输入维度为2*num_hiddens,输出维度为10

enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
# 创建一个大小为(seq_len, batch_size, num_hiddens)的全零张量,表示编码器的状态序列

dec_state = torch.zeros((batch_size, num_hiddens))
# 创建一个大小为(batch_size, num_hiddens)的全零张量,表示解码器的初始状态

attention_forward(model, enc_states, dec_state).shape
# 调用attention_forward函数,传入model、enc_states和dec_state三个参数进行前向传播计算,并获取输出的形状
# 返回的shape表示attention_forward函数的输出形状

2.3含注意力机制的解码器

我们直接将编码器在最终时间步的隐藏状态作为解码器的初始隐藏状态。这要求编码器和解码器的循环神经网络使用相同的隐藏层个数和隐藏单元个数。

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

3.训练模型

我们先实现batch_loss函数计算一个小批量的损失。解码器在最初时间步的输入是特殊字符BOS。之后,解码器在某时间步的输入为样本输出序列在上一时间步的词,即强制教学。此外,我们在这里也使用掩码变量避免填充项对损失函数计算的影响。

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]  # 获取批量大小
    enc_state = encoder.begin_state()  # 获取编码器的初始状态
    
    enc_outputs, enc_state = encoder(X, enc_state)
    # 编码器对输入X进行编码,得到编码器的输出enc_outputs和最终的隐藏状态enc_state
    
    dec_state = decoder.begin_state(enc_state)
    # 使用编码器的最终状态初始化解码器的初始状态
    
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 解码器的初始输入是BOS(开始符号)的索引,复制batch_size份,转为张量
    
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    # 初始化掩码变量mask,用于忽略填充项PAD的损失计算,初始设为全1
    # num_not_pad_tokens用于统计非填充标记的数量,初始化为0
    
    l = torch.tensor([0.0])  # 初始化损失值为0
    
    for y in Y.permute(1, 0):  # 对Y进行转置,遍历每个时间步的目标序列y(形状为(batch, seq_len))
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        # 解码器根据当前输入dec_input、解码器的状态dec_state和编码器的输出enc_outputs进行解码
        
        l = l + (mask * loss(dec_output, y)).sum()
        # 计算当前时间步的损失,乘以mask以忽略PAD的影响,然后求和累加到总损失l
        
        dec_input = y  # 强制教学:将当前目标序列y作为下一个时间步的解码器输入
        
        num_not_pad_tokens += mask.sum().item()
        # 统计当前批次中非填充标记的数量,累加
        
        mask = mask * (y != out_vocab.stoi[EOS]).float()
        # 更新mask:如果当前时间步y是EOS(结束符),则mask置为0,否则保持不变(乘以1)
    
    return l / num_not_pad_tokens
    # 返回平均每个非填充标记的损失值

在训练函数中,我们需要同时迭代编码器和解码器的模型参数。

def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)  # 定义编码器的优化器
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)  # 定义解码器的优化器

    loss = nn.CrossEntropyLoss(reduction='none')  # 定义损失函数为交叉熵损失,并设置为不进行求和或平均
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)  # 创建数据迭代器,用于批量加载数据集并打乱顺序

    for epoch in range(num_epochs):  # 迭代训练epochs次
        l_sum = 0.0  # 初始化损失累加器

        for X, Y in data_iter:  # 遍历数据迭代器,获取每个批次的输入X和目标Y
            enc_optimizer.zero_grad()  # 清空编码器优化器的梯度
            dec_optimizer.zero_grad()  # 清空解码器优化器的梯度

            l = batch_loss(encoder, decoder, X, Y, loss)  # 计算当前批次的损失
            l.backward()  # 反向传播,计算梯度
            enc_optimizer.step()  # 更新编码器参数
            dec_optimizer.step()  # 更新解码器参数

            l_sum += l.item()  # 累加当前批次的损失值

        if (epoch + 1) % 10 == 0:  # 每10个epoch输出一次损失
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))  # 输出当前epoch的平均损失值

接下来,创建模型实例并设置超参数。然后,我们就可以训练模型了。

# 定义编码器和解码器的嵌入维度、隐藏单元数和层数
embed_size, num_hiddens, num_layers = 64, 64, 2
# 定义注意力机制的大小、dropout概率、学习率、批量大小和训练的总epoch数
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50

# 创建编码器实例,传入输入词汇表的大小、嵌入维度、隐藏单元数、层数和dropout概率
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers, drop_prob)
# 创建解码器实例,传入输出词汇表的大小、嵌入维度、隐藏单元数、层数、注意力大小和dropout概率
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers, attention_size, drop_prob)

# 调用train函数进行模型训练,传入编码器、解码器、数据集、学习率、批量大小和训练epoch数
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

4.预测不定长序列

这里我们实现最简单的贪婪搜索来生成解码器在每个时间步的输出。

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割成单词,并添加结束符号EOS和填充符号PAD,使其长度达到max_seq_len
    in_tokens = input_seq.split(' ')
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    
    # 将输入单词序列转换为对应的索引序列,然后用torch.tensor封装成张量,batch大小为1
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]])  # batch=1
    
    # 初始化编码器的初始状态
    enc_state = encoder.begin_state()
    
    # 使用编码器对输入序列进行编码,得到编码器的输出和最终状态
    enc_output, enc_state = encoder(enc_input, enc_state)
    
    # 初始化解码器的输入为起始符号BOS的索引
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    
    # 使用编码器的最终状态初始化解码器的初始状态
    dec_state = decoder.begin_state(enc_state)
    
    # 初始化输出token列表
    output_tokens = []
    
    # 开始解码过程,最多进行max_seq_len次解码
    for _ in range(max_seq_len):
        # 将当前解码器的输入和状态传入解码器,得到解码器的输出和更新后的状态
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        
        # 获取解码器输出概率最大的预测token的索引
        pred = dec_output.argmax(dim=1)
        
        # 将预测token索引转换为对应的实际token字符串
        pred_token = out_vocab.itos[int(pred.item())]
        
        # 如果预测的token为结束符号EOS,则停止解码
        if pred_token == EOS:
            break
        else:
            # 将当前预测的token添加到输出序列中
            output_tokens.append(pred_token)
            # 更新解码器的输入为当前预测的token的索引,用于下一步解码
            dec_input = pred
    
    # 返回最终的输出token序列
    return output_tokens

简单测试一下模型。输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

input_seq = 'ils regardent .'  # 输入法语句子“ils regardent.”
translate(encoder, decoder, input_seq, max_seq_len)

5.评价翻译结果

评价机器翻译结果通常使用BLEU(Bilingual Evaluation Understudy)。对于模型预测序列中任意的子序列,BLEU考察这个子序列是否出现在标签序列中。

具体来说,设词数为𝑛的子序列的精度为p_{n}。它是预测序列与标签序列匹配词数为𝑛的子序列的数量与预测序列中词数为𝑛的子序列的数量之比。举个例子,假设标签序列为𝐴、𝐵、𝐶、𝐷、𝐸、𝐹,预测序列为𝐴、𝐵、𝐵、𝐶、𝐷,那么𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0𝑝1=4/5,𝑝2=3/4,𝑝3=1/3,𝑝4=0。设len_{label}len_{pred}分别为标签序列和预测序列的词数,那么,BLEU的定义为:

其中𝑘是我们希望匹配的子序列的最大词数。可以看到当预测序列和标签序列完全一致时,BLEU为1。

下面来实现BLEU的计算

def bleu(pred_tokens, label_tokens, k):
    # 计算预测序列和参考序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 初始化BLEU分数,考虑长度惩罚因子
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 计算各个n-gram的匹配情况
    for n in range(1, k + 1):
        num_matches = 0  # 匹配的n-gram数量
        label_subs = collections.defaultdict(int)  # 参考序列中各个n-gram的出现次数
        
        # 统计参考序列中所有n-gram的出现次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 统计预测序列中与参考序列匹配的n-gram数量
        for i in range(len_pred - n + 1):
            ngram_pred = ''.join(pred_tokens[i: i + n])  # 当前预测序列的n-gram
            if label_subs[ngram_pred] > 0:
                num_matches += 1
                label_subs[ngram_pred] -= 1
        
        # 计算当前n-gram匹配的精确度
        precision = num_matches / (len_pred - n + 1)
        
        # 根据n-gram的权重因子进行加权
        weight = math.pow(0.5, n)
        
        # 更新BLEU分数
        score *= math.pow(precision, weight)
    
    # 返回最终的BLEU分数
    return score

接下来,定义一个辅助打印函数

def score(input_seq, label_seq, k):
    # 使用编码器和解码器将输入序列翻译成预测的token序列
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    
    # 将参考序列按空格分割为token列表
    label_tokens = label_seq.split(' ')
    
    # 计算BLEU分数并打印预测的token序列
    bleu_score = bleu(pred_tokens, label_tokens, k)
    print('bleu %.3f, predict: %s' % (bleu_score, ' '.join(pred_tokens)))
score('ils regardent .', 'they are watching .', k=2)  # 调用 bleu 函数计算预测的token序列 
score('ils sont canadienne .', 'they are canadian .', k=2)

  • 20
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值