- 博客(9)
- 收藏
- 关注
原创 基于迁移学习的水果分类和成熟度识别系统
数据集中包含了两个文件夹,分别是整理好的训练集和测试集,需要注意的是,并没有整理验证集,因此在训练时需要手动或使用代码区分训练集和验证集。
2024-11-07 22:39:18 672
原创 移动通信系统应用设计-基于Simulink平台搭建MIMO系统仿真
本文介绍了一个基于Simulink平台的MIMO仿真系统模型搭建以及各模块参数设置
2024-07-09 13:33:33 1168
原创 Leetcode每日一题(2024.5.3)1491.去掉最高工资和最低工资后的平均工资
给你一个整数数组salary,数组里每个数都是的,其中salary[i]是第i个员工的工资。请你返回去掉最低工资和最高工资以后,剩下员工工资的平均值。2500.00000最低工资和最高工资分别是 1000 和 4000。去掉最低工资和最高工资以后的平均工资是 (2000+3000)/2= 25002000.00000最低工资和最高工资分别是 1000 和 3000。去掉最低工资和最高工资以后的平均工资是 (2000)/1= 20003500.000004750.00000。
2024-05-03 09:13:41 362 1
原创 机器学习笔记——使用Python和Pytorch框架,基于CNN模型开发图像识别系统案例
分析了一个使用Python语言和Pytorch框架,基于CNN模型开发的图像识别系统案例
2024-05-02 20:10:37 1561 2
原创 机器学习笔记-基于谱聚类开发的聚类任务(Python)-代码链接在文末
在鸢尾花数据集中,标签是一个整数,表示每个样本所属的类别,有三种可能的值,分别对应鸢尾花的三个品种:山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。聚类数目是会直接影响到聚类结果的质量和解释性的重要参数,因此本实验中使用Calinski-Harabasz指数评估聚类的质量,从而选择最佳的聚类数目。编写程序计算聚类数目从2-10的聚类质量并输出。在鸢尾花数据集中,每个样本有四个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。
2024-04-27 17:28:42 1017
原创 机器学习笔记-基于决策树开发的分类任务(Python)-代码链接在文末
节点将被填充,颜色表示了分类的主要类别(对于分类问题),值的极值(对于回归问题),或者节点的纯度(对于多输出问题)。在这个例子中,使用了 iris 数据集的目标类名称。在这个例子中,使用了 iris 数据集的特征名称。由于下一步我们希望可视化决策树,这就要使用pydotplus库中的函数,使用前需要先将决策树导出为dot格式。函数的作用是将决策树的Graphviz表示写入dot_data。,函数会返回一个字符串,包含了 DOT 格式的决策树。,特殊字符将被正确处理,可以在节点的标签中使用。
2024-04-26 09:10:59 587 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人