porridgey
码龄3年
关注
提问 私信
  • 博客:6,217
    6,217
    总访问量
  • 6
    原创
  • 189,465
    排名
  • 118
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2022-06-17
博客简介:

m0_72088520的博客

查看详细资料
  • 原力等级
    当前等级
    1
    当前总分
    94
    当月
    2
个人成就
  • 获得167次点赞
  • 内容获得2次评论
  • 获得105次收藏
  • 代码片获得127次分享
创作历程
  • 6篇
    2024年
成就勋章
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于transformer实现机器翻译

来源:作者报考院校课题组一、导入必要的库查看你的环境是否有如下库,如果没有请自行安装。import io# print(torch.cuda.get_device_name(0)) ## 如果你有GPU,请在你自己的电脑上尝试运行这一套代码笔者能力有限,如果有不理解的地方请见谅。
原创
发布博客 2024.06.24 ·
780 阅读 ·
31 点赞 ·
0 评论 ·
8 收藏

Encoder-Decoder应用——机器翻译

机器翻译是指将一段文本从一种语言自动翻译到另一种语言。因为一段文本序列在不同语言中的长度不一定相同,所以我们使用机器翻译为例来介绍编码器—解码器和注意力机制的应用。实验环境来源:读者报考院校课题组每一行是一句法语和对应的英语翻译。一、读取和预处理我们先定义一些特殊符号。其中“<pad>”(padding)符号用来添加在较短序列后,直到每个序列等长,而“<bos>”和“<eos>”符号分别表示序列的开始和结束。import collections # 导入collections模块,用于实现特定目标的容器。
原创
发布博客 2024.06.24 ·
973 阅读 ·
19 点赞 ·
1 评论 ·
30 收藏

远程服务器无权限安装Tmux

Tmux用于在离开电脑去吃饭睡觉模型也能继续训练……我参考了很多博客都没有安装成功,最后参考了这篇博客在他的基础上做了些少许改动安装成功。
原创
发布博客 2024.06.12 ·
540 阅读 ·
7 点赞 ·
0 评论 ·
10 收藏

远程服务器安装Pytorch

作为研0小白,当导师分给你4090去跑代码,当你满心欢喜去找师兄创建账号,当你顺利连通远程服务器,当你兴致勃勃打开code准备一展身手的时候,torch.cuda.is_available()->False给你别样的惊喜。这篇博客将会介绍我安装Pytorch的部分历程,希望对你有用。嗯,因为大多数服务器都要求连接校园网使用,但是我现在还在本科院校,所以使用了师兄的EasyConnet账号,如果有读者感兴趣,等我有时间可以出一篇博客介绍下这个软件~一、CUDA和Cudnn。
原创
发布博客 2024.06.11 ·
1895 阅读 ·
50 点赞 ·
0 评论 ·
35 收藏

NLP——CNN处理姓氏分类

这是一篇实验博客——数据集、代码均未完整公示,谨展示基本训练流程,请客官谨慎食用。本次实验基于torch架构,适合具有一定基础的读者阅读。本次实验适合具有一定NLP基础的读者阅读。一、CNN是什么?卷积神经网络(Convolutional Neural Network,CNN)是一种在计算机视觉领域取得了巨大成功的深度学习模型。它们的设计灵感来自于生物学中的视觉系统,旨在模拟人类视觉处理的方式。
原创
发布博客 2024.06.08 ·
1028 阅读 ·
30 点赞 ·
0 评论 ·
12 收藏

使用前馈神经网络实现姓氏分类

在上次实验中,我们通过观察感知器来介绍神经网络的基础,感知器是现存最简单的神经网络。感知器的一个历史性的缺点是它不能学习数据中存在的一些非常重要的模式。例如,查看图1中绘制的数据点。这相当于非此即彼(XOR)的情况,在这种情况下,决策边界不能是一条直线(也称为线性可分)。在这个例子中,感知器失败了。图1 XOR数据集中的两个类绘制为圆形和星形。请注意,没有任何一行可以分隔这两个类。在这一实验中,我们将探索传统上称为前馈网络的神经网络模型,以及两种前馈神经网络:多层感知器和卷积神经网络。
原创
发布博客 2024.06.03 ·
1001 阅读 ·
30 点赞 ·
1 评论 ·
10 收藏