整型在内存中的存储(超详细,绝对受益匪浅)

本文详细介绍了整数在计算机中的存储形式,包括原码、反码和补码的概念,并解释了为何采用补码存储。此外,还探讨了大端和小端存储模式的区别及其原理,并通过实例演示了整型提升的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.数据类型介绍

2.整形在内存中的存储

2.1原码、反码、补码

2.2 大小端介绍

2.3整型提升


 

1.数据类型介绍

char        //字符数据类型

short       //短整型

int         //整形

long        //长整型

long long   //更长的整形

float       //单精度浮点数

double      //双精度浮点数

2.整形在内存中的存储

今天我们来学习整形在内存中的存储。

整形在内存中的存储的三种码:原码、反码、补码

2.1原码、反码、补码

       算机中的整数有三种2进制表示方法,即原码、反码和补码。

       三种表示方法均有符号位数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位

正数的原、反、补码都相同。

        负整数的三种表示方法各不相同。

原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。

反码:将原码的符号位不变,其他位依次按位取反就可以得到反码

补码:反码+1就得到补码

	int a = 20;
	//4byte = 32bit
	//00000000000000000000000000010100     - 原码
	//00000000000000000000000000010100     - 反码
	//00000000000000000000000000010100     - 补码
	int b = -10;
	//10000000000000000000000000001010	   - 原码
	//11111111111111111111111111110101     - 反码
	//11111111111111111111111111110110     - 补码
    //ff ff ff f6

将这段代码进行调试(F10)

102089e623ed44c19195717e2ca6d06e.png

201974c53e264d9e9e80d151e51e01f3.png

即:数据存放内存中其实存放的是补码。

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理; 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程 是相同的,不需要额外的硬件电路。

那么问题来了,我们在进行计算时候,符号位进不进行计算呢?接下来我们通过计算来仔细说明一下

	int c = 1 - 1;
	//1-1
	//1+(-1)
	//00000000000000000000000000000001 - 补码
	//11111111111111111111111111111111 - -1的补码 
	//00000000000000000000000000000000 
    //原码的计算是错误的
	//00000000000000000000000000000001
	//10000000000000000000000000000001
	//10000000000000000000000000000010 -> -2

 

 原码到补码————1种方式

 原码取反、+1得到补码

补码到原码————2种方式

1.补码-1、取反得到原码

2.补码取反、+1得到原码

2.2 大小端介绍

dc40331b3e534a7c8d384d848ecf138b.png 

什么大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中; 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地 址中。

08181ea20df5418aa46244f5c62aa662.png 

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元 都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有1 6 bit的short型, 32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如1 6位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。

例如:一个 16bi t 的 sho rt 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM, DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式。

7814b548b19643dd84c566913a13c097.png

下面我们来看一道笔试题:

a094ff7c359141feb1f3824f3ea52792.png 小端字节序存储:

把一个数值的低位字节内容,存放到低地址处,高位字节内容,存放到高地址处。

大端字节序存储:

 把一个数值的低位字节内容,存放到高地址处,高位字节内容,存放到低地址处。

bc03d143de3740919465498bf3295224.png

#include <stdio.h>
int main()
{
	int a = 1;
	char*p = (char*)&a;

	if (*p == 1)
		printf("小端\n");
	else
		printf("大端\n");

	return 0;
}

使用函数:

int check_sys()
{
	int a = 1;
	return *(char*)&a;
}

int main()
{
	if(check_sys() == 1)
		printf("小端\n");
	else
		printf("大端\n");

	return 0;
}

练习:

#include <stdio.h>

int main()
{
    char a= -1 ;
    signed char b=-1;
    unsigned char c=-1;
    printf("a=%d , b=%d , c=%d" , a , b , c) ;
    return 0 ;
}

运行结果:

270454fcbf824378b6a63757319f43e5.png

分析:

a是一个char类型变量,char类型变量就是一个字节,一个字节就是八个比特位,只能存放八个比特位,即低八位比特位,如图

int main()
{
	char a = -1;  //-1截断后存储到a中
	//10000000000000000000000000000001	-1的原码
	//11111111111111111111111111111110	-1的反码
	//11111111111111111111111111111111  -1的补码
	//11111111 ---- a
	
	signed char b = -1;
	//11111111111111111111111111111111  -1的补码
	//11111111 ---- b
	//

	unsigned char c = -1;
	//11111111111111111111111111111111  -1的补码
	//11111111 ---- c
	//
	printf("a=%d,b=%d,c=%d", a, b, c);
	//-1 -1 
	//11111111111111111111111111111111
	//11111111111111111111111111111110
	//10000000000000000000000000000001

	//11111111
	//00000000000000000000000011111111

	return 0;
}

整型提升:

11111111 ---- a
11111111 ---- b
11111111 ---- c
printf("a=%d , b=%d , c=%d" , a , b , c) ;

a(是一个char类型的)是以%d打印,这就需要整型提升

提升后:(有符号数高位添符号位,无符号数高位添0)

11111111111111111111111111111111 ---- a
11111111111111111111111111111111 ---- b
00000000000000000000000011111111 ---- c

有符号数和无符号数的取值范围如何定?

cd898fb630f7484b88459a7d6a499173.pngb43bc3319c3140eea17629d670aad03e.png

%u 是打印无符号整形,认为内存中存放的补码对应的是一个无符号数
%d 是打印有符号整形,认为内存中存放的补码对应的是一个有符号数

2.3整型提升

1.什么是整型提升

C的整型算术运算总是至少以缺省整型类型的精度来进行的。 为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型 提升 。
只要有(算术运算出现)并且(运算的变量不够整型4个字节),就要整型提升;

2.整型提升的意义:

表达式的整型运算要在 CPU 的相应运算器件内执行, CPU 内整型运算器 (ALU) 的操作数的字节长度 一般就是int 的字节长度,同时也是 CPU 的通用寄存器的长度。
因此,即使两个 char 类型的相加,在 CPU 执行时实际上也要先转换为 CPU 内整型操作数的标准长度。

通用 CPU ( general-purpose CPU )是难以直接实现两个 8 比特字节直接相加运算(虽然机器指令 中可能有这种字节相加指令)。所以,表达式中各种长度可能小于int 长度的整型值,都必须先转换为int 或 unsigned int ,然后才能送入 CPU 去执行运算。

3.如何提升:

有符号数高位添符号位,无符号数高位添0

 

 

 

 

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奋斗小温

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值