目录
1.数据类型介绍
char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数
2.整形在内存中的存储
今天我们来学习整形在内存中的存储。
整形在内存中的存储的三种码:原码、反码、补码
2.1原码、反码、补码
算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码
补码:反码+1就得到补码
int a = 20;
//4byte = 32bit
//00000000000000000000000000010100 - 原码
//00000000000000000000000000010100 - 反码
//00000000000000000000000000010100 - 补码
int b = -10;
//10000000000000000000000000001010 - 原码
//11111111111111111111111111110101 - 反码
//11111111111111111111111111110110 - 补码
//ff ff ff f6
将这段代码进行调试(F10)
即:数据存放内存中其实存放的是补码。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理; 同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程 是相同的,不需要额外的硬件电路。
那么问题来了,我们在进行计算时候,符号位进不进行计算呢?接下来我们通过计算来仔细说明一下
int c = 1 - 1;
//1-1
//1+(-1)
//00000000000000000000000000000001 - 补码
//11111111111111111111111111111111 - -1的补码
//00000000000000000000000000000000
//原码的计算是错误的
//00000000000000000000000000000001
//10000000000000000000000000000001
//10000000000000000000000000000010 -> -2
原码到补码————1种方式
原码取反、+1得到补码
补码到原码————2种方式
1.补码-1、取反得到原码
2.补码取反、+1得到原码
2.2 大小端介绍
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中; 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地 址中。
为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元 都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有1 6 bit的short型, 32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如1 6位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。
例如:一个 16bi t 的 sho rt 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM, DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式 还是小端模式。
下面我们来看一道笔试题:
小端字节序存储:
把一个数值的低位字节内容,存放到低地址处,高位字节内容,存放到高地址处。
大端字节序存储:
把一个数值的低位字节内容,存放到高地址处,高位字节内容,存放到低地址处。
#include <stdio.h>
int main()
{
int a = 1;
char*p = (char*)&a;
if (*p == 1)
printf("小端\n");
else
printf("大端\n");
return 0;
}
使用函数:
int check_sys()
{
int a = 1;
return *(char*)&a;
}
int main()
{
if(check_sys() == 1)
printf("小端\n");
else
printf("大端\n");
return 0;
}
练习:
#include <stdio.h>
int main()
{
char a= -1 ;
signed char b=-1;
unsigned char c=-1;
printf("a=%d , b=%d , c=%d" , a , b , c) ;
return 0 ;
}
运行结果:
分析:
a是一个char类型变量,char类型变量就是一个字节,一个字节就是八个比特位,只能存放八个比特位,即低八位比特位,如图
int main()
{
char a = -1; //-1截断后存储到a中
//10000000000000000000000000000001 -1的原码
//11111111111111111111111111111110 -1的反码
//11111111111111111111111111111111 -1的补码
//11111111 ---- a
signed char b = -1;
//11111111111111111111111111111111 -1的补码
//11111111 ---- b
//
unsigned char c = -1;
//11111111111111111111111111111111 -1的补码
//11111111 ---- c
//
printf("a=%d,b=%d,c=%d", a, b, c);
//-1 -1
//11111111111111111111111111111111
//11111111111111111111111111111110
//10000000000000000000000000000001
//11111111
//00000000000000000000000011111111
return 0;
}
整型提升:
11111111 ---- a
11111111 ---- b
11111111 ---- c
printf("a=%d , b=%d , c=%d" , a , b , c) ;
a(是一个char类型的)是以%d打印,这就需要整型提升
提升后:(有符号数高位添符号位,无符号数高位添0)
11111111111111111111111111111111 ---- a
11111111111111111111111111111111 ---- b
00000000000000000000000011111111 ---- c
有符号数和无符号数的取值范围如何定?
%u 是打印无符号整形,认为内存中存放的补码对应的是一个无符号数
%d 是打印有符号整形,认为内存中存放的补码对应的是一个有符号数
2.3整型提升
1.什么是整型提升:
C的整型算术运算总是至少以缺省整型类型的精度来进行的。 为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型 提升 。
只要有(算术运算出现)并且(运算的变量不够整型4个字节),就要整型提升;
2.整型提升的意义:
表达式的整型运算要在 CPU 的相应运算器件内执行, CPU 内整型运算器 (ALU) 的操作数的字节长度 一般就是int 的字节长度,同时也是 CPU 的通用寄存器的长度。
因此,即使两个 char 类型的相加,在 CPU 执行时实际上也要先转换为 CPU 内整型操作数的标准长度。
通用 CPU ( general-purpose CPU )是难以直接实现两个 8 比特字节直接相加运算(虽然机器指令 中可能有这种字节相加指令)。所以,表达式中各种长度可能小于int 长度的整型值,都必须先转换为int 或 unsigned int ,然后才能送入 CPU 去执行运算。
3.如何提升:
有符号数高位添符号位,无符号数高位添0