思路:我们定义 f[i][0] 表示在第 i 小时选择能量饮料 A 获得的最大强化能量,定义 f[i][1] 表示在第 i 小时选择能量饮料 B 获得的最大强化能量。初始时 f[0][0]=energyDrinkA[0], f[0][1]=energyDrinkB[0]。答案为 max(f[n−1][0],f[n−1][1])。
对于 i>0,我们有以下状态转移方程:
f[i][0]=max(f[i−1][0]+energyDrinkA[i],f[i−1][1])
f[i][1]=max(f[i−1][1]+energyDrinkB[i],f[i−1][0])
最后返回 max(f[n−1][0],f[n−1][1]) 即可。
状态 f[i] 至于 f[i−1] 有关,而与 f[i−2] 无关。因此我们可以只使用两个变量 f 和 g 来维护状态,从而将空间复杂度优化到 O(1)。
class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
long long f = energyDrinkA[0], g = energyDrinkB[0];
for (int i = 1; i < n; ++i) {
long long ff = max(f + energyDrinkA[i], g);
g = max(g + energyDrinkB[i], f);
f = ff;
}
return max(f, g);
}
};