- 博客(89)
- 收藏
- 关注
原创 docker安装Milvus
将上面网址的内容粘贴到server_config.yaml文件中。直接创建一个server_config.yml。拉去CPU版本的milvus镜像。下面我们就要启动mlivus。
2024-03-18 18:41:41 1178
原创 PyTorch深度学习快速入门
显示false是因为cuda下错版本了,要与自己的电脑对应起来。conda9.2以上要确保我们的驱动版本大于396.26。n表示name的意思,pytorch就是这个环境的名字。因为我们之后在不同的项目、代码需要的环境是不一样的。我们要先查询一下自己的驱动版本nvidia-smi。有的代码需要pytorch0.4、有的需要1.0。在命令行窗口看见base就是安装成功。但其中没有我们需要的pytorch。我们要检查显卡的驱动是否正确安装。python=3表示要安装的包。左边括号里面的就是环境的名称。
2024-02-29 19:19:12 739 1
原创 深度学习基础
映射到样本标记空间的作用。到隐藏层2后,我们认为这里作为特征已经足够了,当前我们就使用隐藏层2最终得到的特征得到一个输出结果,我们看一下得到预测结果最终等于多少。深度学习就是去学什么样的特征是最合适的,有了特征之后,我们可以加其他东西,比如加LR(逻辑回归)做分类,或者传到SVM中…跟我们的分类任务还是有点差距,分类任务要得到的我们属于猫这个类的一个概率值。我们的神经网络就是做一个任务,什么样的W适合当前的任务,我就去改变这个W。输入一个数据,得到一个得分值,得分值做一个exp映射,使其更加明显一些。
2024-02-28 11:43:56 1281
原创 第四章 Day4
第四章 Day41.今日内容2.自媒体文章审核流程说明3.阿里云接口-概述4.阿里云接口-项目中集成5.分布式主键策略-雪花算法1.今日内容2.自媒体文章审核流程说明3.阿里云接口-概述4.阿里云接口-项目中集成5.分布式主键策略-雪花算法
2024-02-26 21:02:52 366
原创 第一章 Day1
下面我们固定虚拟机的ip地址修改子网ip,点击应用,再点击确定连接虚拟机docker logs -f 用来查看日记关于mybatis-plus,数据库的配置,在nacos中配置导包添加配置类路径放到下面使其生效添加swagger注解,api。
2024-02-25 23:47:12 369
原创 第五章 项目优化
先创建一个本地的仓库上面的代码是基础部分下面我们进行优化的时候我们可以创建一个新的分支下面我们将V1.0这个分支也给推送上去下面我们对缓存的开发就在V1.0这个分支上进行如果我们在1.0上面开发没有问题,我们就将其合并到我们的主分支即master分支如果报错就执行下面的命令如果我们执行insert操作就会走master库如果我们执行select操作就会走slave库。
2024-02-24 23:25:22 791
原创 模型的收敛
当模型收敛时,损失函数不再显著减小,模型的性能在训练数据和验证数据上达到一个相对稳定的状态。过度拟合是另一个需要考虑的因素,即模型在训练数据上表现得很好,但在未见过的数据上表现较差。模型的收敛是指在训练过程中模型逐渐学习到数据的模式和特征,参数的调整逐渐趋于稳定的过程。在神经网络的训练中,模型的收敛通常伴随着损失函数的逐渐减小和性能的提高。在深度学习中,训练一个模型涉及到通过反向传播算法不断调整模型的权重,以最小化损失函数。模型的收敛取决于多个因素,包括学习率、数据质量、模型架构等。
2024-01-24 10:49:03 1522 1
原创 transformer详解
一个典型的编码器-解码器的结构,类似于sequence-to-sequence这6(可以自己定)个encode,decode在结构上是完全相同的,但是参数不是完全相同的训练的时候,不是训练了一个encode,然后copy 6次,而是6个encode多在训练。
2024-01-24 00:38:20 908
原创 残差连接是什么意思
在残差连接中,X 通常被称为“残差”或“跳跃连接”,因为它是从输入直接跳到输出的。这样的设计使得网络的每一层都能够学习残差,而不是必须从零开始学习整个映射。这有助于缓解训练深层网络时的梯度消失问题,同时提高了网络的收敛速度。它的核心思想是通过将网络的输入直接传递到网络的输出,从而构建了一条直达路径,使得梯度更容易通过整个网络传播。这有助于在训练深层网络时避免梯度消失或梯度爆炸的问题。残差连接最早由何凯明等人在2016年的论文中提出,并被成功地应用于深度残差网络(ResNet)中。
2024-01-23 20:14:17 1104
原创 梯度消失是什么意思
在数学和计算机科学中,梯度是一个向量,表示函数在某一点处的变化率和变化的方向。梯度是多变量函数的偏导数组成的向量。在机器学习中,梯度也被称为损失函数对模型参数的偏导数。当我们训练一个模型时,通过梯度下降法或其变种,我们尝试最小化损失函数。梯度指示了在当前参数值下,损失函数增加最快的方向,因此我们沿着梯度的负方向更新参数,以逐步减小损失函数的值。形象地说,梯度是一个指向最快上升的方向。通过在梯度的反方向上移动,我们可以寻找损失函数的局部最小值,这是优化过程的核心思想。
2024-01-23 20:10:49 580
原创 损失函数是指什么
损失函数衡量了模型预测的错误程度,这个错误通常用一个实数值来表示。优化算法通过调整模型的参数,使损失函数的值最小化,从而使模型在训练数据上更好地拟合。损失函数(Loss Function)是用来衡量模型预测输出与实际目标之间差异的函数。在机器学习和深度学习中,损失函数是模型训练的关键部分。其目标是通过最小化损失函数来使模型的预测尽可能接近实际的标签或目标值。不同的任务和模型可能需要使用不同的损失函数,选择合适的损失函数是模型训练中的重要决策之一。
2024-01-23 19:46:41 394
原创 反向传播是什么意思
这个过程实际上是在利用梯度信息不断调整模型参数,使得模型的输出逐渐接近实际标签,从而提高模型的性能。反向传播(Backpropagation)是指在神经网络中使用梯度下降等优化算法进行模型训练时,通过计算损失函数对模型参数的梯度,然后反向传播这些梯度从输出层到输入层,以更新模型参数的过程。(Forward Propagation): 通过神经网络,使用当前的模型参数,将输入数据从输入层传递到输出层,得到模型的预测结果。: 使用梯度下降或其他优化算法,沿着梯度的负方向更新模型参数,以减小损失函数的值。
2024-01-23 19:45:11 1481
原创 归一化是是什么意思,为什么要归一化
在数据处理中,归一化的目标是使数据具有统一的尺度,以便更好地适应模型的训练和提高模型性能。异: 不同特征可能具有不同的尺度和范围,这可能导致某些特征在模型训练中起主导作用,而其他特征的影响被忽略。总的来说,归一化是一种预处理数据的重要步骤,有助于改善模型的性能、加速训练过程并提高模型的稳定性。不同的归一化方法可以根据具体的应用和数据分布选择。: 在训练深度神经网络等模型时,数据的归一化可以加速模型的收敛。: 归一化有助于模型更好地适应不同规模和范围的数据,从而提高模型的泛化能力,使其在新的数据上表现更好。
2024-01-23 19:43:04 2635
原创 第十四章 MyBatis
不需要的删除Springboot自带配置文件这里的mapper包就相当于三层架构里面的Dao这个包下面我们测试一下引入依赖老idea版本要自己装。
2024-01-19 23:21:07 860
原创 第十二章 分层解耦
如果我们想EmpServiceA生效,我们在@Qualifier中放入EmpServiceA的bean。如果我们没有设置过EmpServiceA的bean,那么就是小写empServiceA。如果我们将empServiceA和empServiceB全交给IOC容器管理,那么。我不将EmpServiceA交给容器管理,将EmpServiceB交给容器管理。此时我将EmpServiceA中的@component注解注释掉即可。此时业务层的代码变了,但其他都不用动。在程序运行的时候到底注入A还是B呢?
2024-01-19 20:42:32 363
原创 第十章 web入门
下面是实际的操作第一步创建成功下面选中的都不要,为了保持简洁性我们全部删除2.第二步我们加上@RestController后这个类才是请求处理类@RequestMapping表示浏览器将来请求/hello这个地址,就会调用hello这个方法3.第三步启动启动我们想要运行下面的启动类启动后,下面会显示8080端口,表示将来会占用8080端口下面我们到浏览器中进行测试点击GENERATE,就会自动联网,并且下载这个springboot项目其中有一个依赖就是Tomcat。
2024-01-19 18:44:53 404
原创 第九章:Maven
Maven:java项目的构建工具下面是一个项目的jar包如果用传统的方式,手动的导入会非常非常的繁琐如果我们要使用Maven来管理依赖我们只要创建一个Maven工程这个工程中我们不需要导入任何的jar包我们想要哪一个,在pom.xml中进行配置即可我们将上面的信息配置完成后,Maven会自动联网下载应的依赖如果我们要升级版本我们直接改即可Maven提供了一系列指令,可以快速完成上述工作Compile是用来进行编译的,并且会将编译后的内容放在target目录下。
2024-01-19 00:26:52 899
原创 第八章:打包部署
4表示进程id,我们打开任务管理器根据进程id查找,发现System已经占用了80端口。此时我们发现启动不了,查看error.log,发现原因是端口号80被占用了。在nginx的conf目录下,打开nginx.conf,将80改为90。下面我们就要将这些打包后的文件部署在前端服务器nginx服务器上面。我们要进行项目部署,只要将dist打包后的资源部署在服务器上即可。下面我们在打开nginx.exe,然后在浏览器中访问网址。我们将dist复制粘贴到nginx的html文件夹下面。下面这些就打包后的文件。
2024-01-19 00:01:35 417
原创 第七章:vue路由
下面我们要在对应的区域加上标签< router-view></ router-view>,来指定我们要动态展示哪一个组件。我们需要配置DepView.vue和EmpView.vue这两个配置下的信息。下面我们由开启了一个新的页面,我们新增了一个部门管理的页面。这里我们不需要安装,因为我们在创建这个vue项目的时候。而且在创建vue对象的时候已经指定了路由。在点击部门管理时显示部门管理的页面。在点击员工管理时显示员工管理的页面。我们在App.vue中加上这个标签。我们要改变下面的菜单。
2024-01-18 23:51:34 520
原创 第六章:Element
下面我们要调整图像字段,现在展示的是图像的url地址,而实际上我们要展示是一个图片。将来我们想要展示的是tableData这个数据模型,下面我们定义一下这个数据模型。下面这个模版,我们只要将鼠标悬浮在姓名王小虎上面,就会显示王小虎的住址信息。Scope.row获得的是这一行数据,然后我们在获取其中的gender字段。下载完成后,我们要在哪个页面用axios,就要在哪个页面引入axios。这样只要vue对象一创建,挂载完成,它就会自动发送这个请求,加载数据。安装成功后,会装在node_modules目录下。
2024-01-18 23:40:32 861
原创 第五章:前端工程化
Script是用来定义js代码的,其中主要定义了vue中的数据模型和方法。这时我们的磁盘中就会出现一个vue-project。此时我们图形化界面中也展示出了这个项目的基本信息。下面我们通过vscode来打开这个新创建的项目。下面我们学习一下如何改变前端vue项目的端口。这个界面是public下vue自带的页面。回车后会自动的调出vue的图形化界面。这里的vue项目使用的端口是8080。我们要将以前的服务清掉,再重新启动。Style中定义的是css中的样式。这个就是我们新创建的vue项目。
2024-01-18 23:17:50 409
原创 第四章:Ajax
效果一样上面是准备工作下面是具体的操作result.data表示整个JSON数据result.data.data表示其中的key为data的那个部分的数据就是下面这一部分this表示当前的vue对象this.emps表示中vue这个对象的emps这个数据模型(emps这个数据模型是用来处理数组的)下面我们只要遍历展示这个emps数据模型中的数据即可v-bind被省略了。
2024-01-18 22:51:22 623
原创 向量数据库如何解决大语言模型的“幻觉”问题
这个问题通常指的是大型语言模型在生成文本时过度依赖于训练数据,导致生成的内容过于特定,缺乏广泛的泛化性。: 向量数据库存储了大量的文本数据,包括来自多个领域和主题的文本。这些文本的多样性可以为大型语言模型提供更广泛的语境和知识,有助于模型更好地泛化到未见过的文本。: 使用向量数据库可以采用更丰富的语境表示方式,例如将文本表示为嵌入空间中的向量。通过比较模型生成的向量与数据库中的实际文本向量,可以识别模型输出中的异常情况。: 向量数据库不断更新,可以引入新颖、最新的文本数据,使得模型能够获取最新的信息。
2024-01-15 17:21:05 864 1
空空如也
深度学习的loss图和accuracy图有问题吗
2024-03-16
TA创建的收藏夹 TA关注的收藏夹
TA关注的人