提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
目录
前言
一、拓扑排序O(v+e)
有向无环图DAG
AOV网络:在有向图中,如果图中的顶点表示活动,图的有向边表示活动之间的优先关系
拓扑序列:
1.仅出现一次.
2.序列中每个顶点不存在边指向前面的节点
定理:DAG一定有拓扑序列,有拓扑序列的AOV一定是DAG
性质:一定有入度为0的点(bfs可结束)一定有出度为0的点(dfs)
1.拓扑排序的BFS算法
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
//遍历所有节点,将度数为0的节入队
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)//队不为空时循环
{
int t = q[hh ++ ];//队头出队
for (int i = h[t]; i != -1; i = ne[i])//访问邻接节点
{
int j = e[i];//j为索引i对应的节点
if (-- d[j] == 0)//节点入度--,若减为0则入队
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
2.拓扑排序的DFS算法
int dfs(int u)
{
st[u] = true; // st[u] 表示点u已经被遍历过
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j]) dfs(j);
}
insert(top_list,u);//将结点插入拓扑序列的头位置
//利用栈,先进的会压到最低,头插法
}
bool topsort()
{
for(int i = 0;i<n;i++)
if(!st[e[i]]) dfs(e[i]);
}
如果把二叉树结点间的父子关系表示成从父结点指向子结点的有向边,则二叉树属于有向无环图(思考)。对二叉树拓扑排序,可用前序遍历,后序遍历,层序遍历实现。(后序遍历结果反转即可得到二叉树拓扑排序)
应用例题:
并行课程(leetcode1136)
首先无先修课程的全部入队,标记学期为1.
逐个出队,记录当前学期并计数出队总数,考察邻居,将邻居入度--,减到0就入队,更新其学期。
若出队总数小于数目,则课程无法安排。
二、最短路径
最优子结构:给定两个顶点之间的一条最短路径,则在该路径上任意两个点之间的路径都是最短的,这种最短子路径称为最优子结构。
定理:如果加权图中所有回路的权值非负,则任意两个结点间的最短路径一定是简单路径!最优子结构一定无回路。
1.Dijkstra(无负值,单源)
每次取出未确定结点中距离源点最近的结点,再用该顶点更新其他顶点的距离(松弛)。
(保证新节点加入后,仍有源点到各点的最短路径性)
朴素版:(邻接矩阵,未进行堆优化) O(n^2+m)
int g[N][N]; // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定
// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n - 1; i ++ )
{
int t = -1; // 在还未确定最短路的点中,寻找距离最小的点
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
// 用t更新其他点的距离
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);
st[t] = true;
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
堆优化版:(邻接表,优化) O(mlogn) 优化查找当前最短距离新点的步骤
typedef pair<int, int> PII;
int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
有向图弱连通,假设一个结点多次入队,第一次入队时距离最长。
Dijkstra也适用于无向图
某元素,入队需要满足 其前驱结点入堆,并且以前驱结点为跳板能更新该元素最短距离。结点的入度大于1,不一定能够多次入队。
如果图中所有边权重相同,则结点最多入队一次,因为不会更新多次最短距离了。
要求边的权重非负,若有负边则最短距离不能简单确定(三角不等式不再成立)
应用:Dragon Quest
找到通过迷宫的最短路径,有权重
1.Dijstra做法2.BFS算法,将权重边视为多走一个虚结点
2.Bellman-Ford(可有负值,渐进松弛边)
核心思想:抽屉原理 n轮循环,每轮都松弛m条边,利用该起点和边权松弛终点到源点的距离
如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
int n, m; // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离
struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];
// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}
if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
SPFA算法(队列优化版)
优化Dijkstra(无负边)和Bellman-Ford
(算法复杂,在松弛过程中,对每条边都会判断是否dist[v]>dist[u]+w(u,v))
若本轮松弛的dist[u],值没有发生变化,下一轮松弛则没有必要再使用dist[u]去改变dist[v],添加FIFO队列记录本轮中dist缩小的结点,在下一轮中仅使用这些结点去松弛邻接结点。
如果本轮松弛中所有节点的dist值都没有发生变化,则结束松弛
//判断是否有负回路:
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。只需要每次松弛路径时,把松弛过的终点cnt++,再判断>=n就可以
int n; // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中
// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
queue<int> q;
q.push(1);
st[1] = true;
while (q.size())
{
auto t = q.front();
q.pop();
st[t] = false;
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q.push(j);
st[j] = true;
}
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
3.floyde算法
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;
// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
三、最小生成树(MST)
给定一个连通的加权图G = (V, E),其中V为顶点的集合,E为边的集合。最小生成树问题是在G中求解权值最小的生成树。从图中任意再多加一条边都一定会构成回路,去掉回路上的任意一条边都会使T重新回到最小生成树
1.Prim算法(扩点法)
Dijkstra算法是更新到起始点的距离,Prim是更新到集合S的距离
用树的父亲表示法保存路径,每次扩点构造的边都由子节点指向父节点
可以有负边,不影响计算。D不能有负权边,是因为可能提前锁定了最短距离的点,而未考虑负边,使三角不等式不成立了。而Prim算法只需考虑最短跨越边,若有负边,一定会在到达某个顶点时被考虑到。
int n; // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中
// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);
int res = 0;//临时存路径长度,每轮加入最短跨越边的权重
for (int i = 0; i < n; i ++ )
{
int t = -1;//负一作为每一轮的第一个边的标志,可以让第一个边直接暂时成为j
for (int j = 1; j <= n; j ++ )//遍历所有点,更新当前最短跨越边的序号
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i && dist[t] == INF) return INF;//若最短跨越边是INF,并且不是第一轮
if (i) res += dist[t];//不是第一轮的话,把最短跨越边权重加入
st[t] = true;//记录已经访问该节点
for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
//用各点到新加入生成树的该点的距离更新最短跨越边
}
return res;
}
用邻接表和优先队列(最小堆)优化Prim
typedef pair<int, int> PII;
int n,sum,cnt; // 点的数量,边权之和,加入树的边数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到跨越边的距离
bool st[N]; // 存储每个点的是否入最短生成树
// 求最短生成树边权之和,如果不存在,则返回0x3F
int prim()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储最短跨越边距离,second存储节点编号
while (heap. Size())
{
auto t = heap. Top();
heap. pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
sum+=distance;cnt++;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > w[i])
{
dist[j] = w[i];
heap. push({dist[j], j});//或{w[i],j}
}
}
}
if (cnt != n) return INF;
return sum;
}
2.Kruskal算法(扩边法)
定理:
1.最小权重的边一定在最小生成树中。
2.在最小生成树上加上一条边构成回路。未加入的边权重,一定大于等于组成该回路的每一条边。
3.如果无向连通图上的所有边权重互异,那么会生成唯一的最小生成树。
并查集
实现Kruskal
首先对所有边元素排序,合并权重最小的边的两个结点。
之后进行所有边的按从小到大的顺序遍历,如果二者不连通,则使起点的祖宗成为终点的新祖宗,最小生成树边权值和加新边权重,cnt++.
若cnt<n-1则无最小生成树(第一个起点a没加入计数)
最小生成树n个顶点 n条边 所以两种方法判断不一样
int n, m; // n是点数,m是边数
int p[N]; // 并查集的父节点数组
struct Edge // 存储边
{
int a, b, w;
bool operator< (const Edge &W)const
{
return w < W.w;
}
}edges[M];
int find(int x) // 并查集核心操作
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int kruskal()
{
sort(edges, edges + m);
for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集
int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
a = find(a), b = find(b);
if (a != b) // 如果两个连通块不连通,则将这两个连通块合并
{
p[a] = b;
res += w;
cnt ++ ;
}
}
if (cnt < n - 1) return INF;
return res;
}
并查集应用
1.村村通
2.整数区间划分p129
3.求依次删除边后连通分量计数:并查集适合合并,不适合分离。倒序求解,去掉所有边,用并查集求联通成分数量
四、关键路径
AOE网络:将边表示为活动的图称为AOE网络(Activity On Edge Network)。在AOE网中,边表示活动,边上权表示活动进行的时间,而顶点表示事件。
通常无环路,仅有入度为0的起点和出度为0的终点。
常用于解决:计算完成活动所需时间,影响进度的关键活动。
关键活动&关键路径:AOE中,最长路径为关键路径,关键路径上的活动称为关键活动。
先正向得到所有事件的最早开始时间,再逆向得到所有事件的最晚开始时间。利用公式推导所有活动的最早最晚开始时间,若二者相同则加入路径。
五、二分图
染色法判定二分图
int n; // n表示点数
int h[N], e[M], ne[M], idx; // 邻接表存储图
int color[N]; // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色
// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if (color[j] == -1)
{
if (!dfs(j, !c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
bool check()
{
memset(color, -1, sizeof color);
bool flag = true;
for (int i = 1; i <= n; i ++ )
if (color[i] == -1)
if (!dfs(i, 0))
{
flag = false;
break;
}
return flag;
}
二分图的匹配
匹配:对于一个二分图,取M为边的子集,若M满足其中任意两条边都没有公共端点,则称M为G的一个匹配。
最大匹配M是指,在所有匹配中,M中边的数量最多。答案不唯一。
匈牙利算法求最大匹配
int n1, n2; // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx; // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N]; // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N]; // 表示第二个集合中的每个点在当前轮次是否已经被遍历过
bool find(int x)
{
for (int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j])
{
st[j] = true;
if (match[j] == 0 || find(match[j]))
{//如果女孩j没有男朋友,或者她原来的男朋友能够预定其它喜欢的女孩。配对成功
match[j] = x;
return true;
}
}
}
return false;
}
// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
memset(st, false, sizeof st);//每轮都要初始化预定情况
if (find(i)) res ++ ;
}
总结
第十七周习题
1.拓扑排序不唯一且不能成环,拓扑排序跟连通与否无关。
2.P 是顶点 S 到 T 的最短路径,如果该图中的所有路径的权值都加 1,P 仍然是 S 到 T 的最短路径。❌
3.
Apply Dijkstra's Algorithm from vertex S = {A}. Which of the following statement is false?
A.The 4th vertex added to the S is E
B.The shortest path from A to L is 15❌a->d->e->I->l 14
C.There is exactly one shortest path from A to F
D.The cost of the shortest path from A -> G, A->H, and A->l is the same
第十八周习题
1.在一个有权无向图中,若b
到a
的最短路径距离是12,且c
到b
之间存在一条权为2的边,则c
到a
的最短路径距离一定不小于10。(ca距离范围时10-14)
2.对于带权无向图 G = (V, E),M 是 G 的最小生成树,则 M 中任意两点 V1 到 V2 的路径一定是它们之间的最短路径。(❌)
最小生成树是想整体连通的最小,不能满足任意两点路径都是最小。
3.若连通图上各边的权值均不相同,则该图的最小生成树是唯一的。✔
4.关于带权无向图的最小生成树问题,若图中某回路上的边权值各不相同,则其中权值最小的边一定在某最小生成树中。❌还需要考虑其他边的情况。如果它会构成另一个回路,则不行
5.已知无向连通图 G 中各边的权值均为 1。下列算法中,一定能够求出图 G 中从某顶点到其余各顶点最短路径的是:
I、 普里姆(Prim)算法❌
II、 克鲁斯卡尔(Kruskal)算法❌
III、 图的广度优先搜索算法✔
无向连通图 G 中各边的权值均为 1 ,G 可以视为无权图,可以用广度优先搜索求单源最短路径,在求无权图的单源最短路径问题中,广度优先搜索比Dijkstra算法更加高效。III正确。
I 和 II 是最小生成树算法,也可直接排除。
习题
1.二叉树为二叉排序树的充分必要条件是其任一结点的值均大于其左孩子的值、小于其右孩子的值。这种说法 B 。
A 正确 B 错误
除此之外,还要考虑兄弟影响等等
2.在表示某工程的AOE网中,加速其关键路径上的任意关键活动均可缩短整个工程的完成时间。❌
只有该关键活动为各关键路径所共有,且减少它尚不能改变关键路径的前提下,才可缩短工期。
3.下面哪一方法可以判断出一个有向图是否有环( 拓扑排序)
4.Prim(普里姆)算法适用于求边稠密的网的最小生成树;kruskal(克鲁斯卡尔)算法适用于求边稀疏的网的最小生成树。Prim扩点,Kruskal扩边