搜索
给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。随后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
解题思路: 一个插入序列可以唯一点的确定一颗二叉搜索树,然而一棵二叉搜索树却可以对应不同的插入序列。每个插入序列是一个1-n的排列,这意味着二叉搜索树的结点是不相同的。
二步走:1、根据输入第二行数据确定一颗二叉搜索树。2、依次检查每棵树与标准树(待检查的树)的一致性。一致输出1,不一致输出0.
#include <stdio.h>
#include <stdlib.h>
typedef struct BstNode{
int data;
struct BstNode* lchild, *rchild;
int flag;
}BstNode,*BST;
int check(BST t,int v);
int judge(BST t,int v);
BST CreateBst(int N);
BST NewNode(int V);
BST InsertNode(BST t,int V);
void Reset(BST t);
void FreeTree(BST t);
int main(){
BST t;
int N,L,i;
scanf("%d",&N);
while(N){
scanf("%d",&L);
t = CreateBst(N);
for(i=0;i<L;i++){
if(judge(t,N))printf("Yes\n");
else printf("No\n");
Reset(t);
}
FreeTree(t);
scanf("%d",&N);
}
return 0;
}
BST NewNode(int V){
BST t = (BstNode*)malloc(sizeof(BstNode));
t->data = V;
t->lchild = t->rchild = NULL;
t->flag = 0;
return t;
}
BST InsertNode(BST t,int V){
if(!t)t=NewNode(V);
else if(V>t->data){
t->rchild=InsertNode(t->rchild,V);
}else {
t->lchild=InsertNode(t->lchild,V);
}
return t;
}
BST CreateBst(int N){
int i,v;
BST t;
scanf("%d",&v);
t = NewNode(v);
for(i=1;i<N;i++){
scanf("%d",&v);
t = InsertNode(t,v);
}
return t;
}
void Reset(BST t){
if(t->lchild)Reset(t->lchild);
if(t->rchild)Reset(t->rchild);
t->flag=0;
}
void FreeTree(BST t){
if(t->lchild)FreeTree(t->lchild);
if(t->rchild)FreeTree(t->rchild);
free(t);
}
int check(BST t,int v)
{
if(t->flag){
if(v<t->data)check(t->lchild,v);
else if(v>t->data)check(t->rchild,v);
else return 0;
}else{
if(t->data==v){
t->flag=1;
return 1;
}
else return 0;
}
}
int judge(BST t,int N){
int flag=0,i,v;//flag=1,表示出现了不一致
scanf("%d",&v);
if(t->data!=v)flag =1;
else t->flag = 1;
for(i=1;i<N;i++){
scanf("%d",&v);
if(!flag&&!check(t,v))flag = 1;
}
if(flag) return 0;
else return 1;
}
程序设计第一步:搭建程序框架
本题二叉搜索树的结点使用二叉链表来表示,并为每个结点设计一个flag,t->flag=0表示结点未被访问。
int main{
1、生成二叉搜索树
2、依次检查与标准树的一致性
return 0;
}
本题难点:输入数据行数不定,遇到n=0截止;二叉搜索树的建立过程转换成结点不断插入的过程;二叉搜索树的比对。check()、judge()函数设计。