浙江大学数据结构陈越、何钦鸣2024--是否是同一颗二叉搜索树

搜索

给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。

输入格式:

输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。随后L行,每行给出N个插入的元素,属于L个需要检查的序列。

简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。

输出格式:

对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。

输入样例:

4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0

解题思路: 一个插入序列可以唯一点的确定一颗二叉搜索树,然而一棵二叉搜索树却可以对应不同的插入序列。每个插入序列是一个1-n的排列,这意味着二叉搜索树的结点是不相同的。

二步走:1、根据输入第二行数据确定一颗二叉搜索树。2、依次检查每棵树与标准树(待检查的树)的一致性。一致输出1,不一致输出0.

#include <stdio.h>
#include <stdlib.h>
typedef struct BstNode{
    int data;
    struct BstNode* lchild, *rchild;
    int flag;
}BstNode,*BST;
int check(BST t,int v);
int judge(BST t,int v);
BST CreateBst(int N);
BST NewNode(int V);
BST InsertNode(BST t,int V);
void Reset(BST t);
void FreeTree(BST t);

int main(){
    BST t;
    int N,L,i;
    scanf("%d",&N);
    while(N){
        scanf("%d",&L);
        t = CreateBst(N);
        for(i=0;i<L;i++){
            if(judge(t,N))printf("Yes\n");
            else printf("No\n");
            Reset(t);
        }
        FreeTree(t);
        scanf("%d",&N);
    }
    
    return 0;
}
BST NewNode(int V){
    BST t = (BstNode*)malloc(sizeof(BstNode));
    t->data = V;
    t->lchild = t->rchild = NULL;
    t->flag = 0;
    return t;
}
BST InsertNode(BST t,int V){
    if(!t)t=NewNode(V);
    else if(V>t->data){
        t->rchild=InsertNode(t->rchild,V);
    }else {
        t->lchild=InsertNode(t->lchild,V);
    }
    return t;
}
BST CreateBst(int N){
    int i,v;
    BST t;
    scanf("%d",&v);
    t = NewNode(v);
    for(i=1;i<N;i++){
        scanf("%d",&v);
        t = InsertNode(t,v);
    }
    return t;
}
void Reset(BST t){
    if(t->lchild)Reset(t->lchild);
    if(t->rchild)Reset(t->rchild);
    t->flag=0;
}
void FreeTree(BST t){
    if(t->lchild)FreeTree(t->lchild);
    if(t->rchild)FreeTree(t->rchild);
    free(t);
}
int check(BST t,int v)
{
    if(t->flag){
        if(v<t->data)check(t->lchild,v);
        else if(v>t->data)check(t->rchild,v);
        else return 0;
    }else{
        if(t->data==v){
            t->flag=1;
            return 1;
        }
        else return 0;
    }
}
int judge(BST t,int N){
    int flag=0,i,v;//flag=1,表示出现了不一致
    scanf("%d",&v);
    if(t->data!=v)flag =1;
    else t->flag = 1;
    for(i=1;i<N;i++){
        scanf("%d",&v);
        if(!flag&&!check(t,v))flag = 1;
    }
    if(flag) return 0;
    else return 1;
    
}

程序设计第一步:搭建程序框架

本题二叉搜索树的结点使用二叉链表来表示,并为每个结点设计一个flag,t->flag=0表示结点未被访问。

int main{

        1、生成二叉搜索树

        2、依次检查与标准树的一致性

        return 0;

}

本题难点:输入数据行数不定,遇到n=0截止;二叉搜索树的建立过程转换成结点不断插入的过程;二叉搜索树的比对。check()、judge()函数设计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

锦川大魔王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值