7. 求组合数

求组合数 1

给定 n 组询问,每组询问给定两个整数 a,b,请你输出 C(a,b) mod (109+7) 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组 a 和 b。

输出格式
共 n 行,每行输出一个询问的解。

数据范围
1 ≤ n ≤ 10000,
1 ≤ b ≤ a ≤ 2000

在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;

const int N = 2010, mod = 1e9 + 7;

int c[N][N];
int n;

//初始化数组,直接进行调用
void init() {
	for (int i = 0; i < N; i++) {
		for (int j = 0; j <= i; j++) {
			if (!j)	c[i][j] = 1;	//当j为0时只有一种可能,即组合数为1

			else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;	//不为0时通过公式对整个数组进行初始化
		}
	}
}

int main() {
	init();

	cin >> n;

	while (n--) {
		int a, b;
		cin >> a >> b;
		cout << c[a][b] << endl;
	}

	return 0;
}

求组合数 2

给定 n 组询问,每组询问给定两个整数 a,b,请你输出 C(a,b) mod (109+7) 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组 a 和 b。

输出格式
共 n 行,每行输出一个询问的解。

数据范围
1 ≤ n ≤ 10000,
1 ≤ b ≤ a ≤ 10^5

在这里插入图片描述
tips:快速幂求逆元见 ztjou.st 传送门

#include<iostream>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10, mod = 1e9 + 7;

LL fact[N], infact[N];

//定义快速幂
int qmi(int a, int k, int p) {
	int res = 1;
	while (k) {
		if (k & 1)	res = (LL)res * a % p;
		a = (LL)a * a % p;
		k >>= 1;
	}
	return res;
}

int main() {
	//首先初始化阶乘和逆元数组
	fact[0] = infact[0] = 1;
	for (int i = 1; i < N; i++) {
		fact[i] = (LL)fact[i - 1] * i % mod;
		infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;	//qmi(i, mod - 2, mod)表示i的逆元
	}

	int n;
	cin >> n;

	while (n--) {
		int a, b;
		cin >> a >> b;
		cout << (LL)fact[a] * infact[b] % mod * infact[a - b] % mod << endl;
	}
	return 0;
}

求组合数3

给定 n 组询问,每组询问给定三个整数 a,b,p,其中 p 是质数,请你输出 C(a,b) mod p 的值。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一组 a,b,p。

输出格式
共 n 行,每行输出一个询问的解。

数据范围
1 ≤ n ≤ 20,
1 ≤ b ≤ a ≤ 10^18,
1 ≤ p ≤ 10^5,

卢卡斯定理:
在这里插入图片描述

#include<iostream>
using namespace std;
typedef long long LL;

int p;

//快速幂
int qmi(int a, int k) {
	int res = 1;
	while (k) {
		if (k & 1)	res = (LL)res * a % p;
		a = (LL)a * a % p;
		k >>= 1;
	}
	return res;
}

int C(int a, int b) {
	int res = 1;
	for (int i = 1, j = a; i <= b; i++, j--) {	//在本次循环中,i从1到b,j从a到a-b+1;  a!/(b!(a-b)!) = a*(a-1)*…*(a-b+1) / b! 
		res = (LL)res * j % p;
		res = (LL)res * qmi(i, p - 2) % p;	//通过快速幂求逆元
	}
	return res;
}

//卢卡斯定理
int lucas(LL a, LL b) {
	if (a < p && b < p)	return C(a, b);
	else return (LL)C(a % p,b % p) * lucas(a / p, b / p) % p;
}

int main() {
	int n;
	cin >> n;
	while (n--) {
		LL a, b;
		cin >> a >> b >> p;
		cout << lucas(a, b) << endl;
	}
}

注意在本代码求 C(a,b) 的过程中,运用到了公式: a! / (b! * (a-b)!) = a * (a-1) * … * (a-b+1) / b!


求组合数4

输入 a,b,求 Cba 的值。
注意结果可能很大,需要使用高精度计算。

输入格式
共一行,包含两个整数 a 和 b。

输出格式
共一行,输出 Cba 的值。

数据范围
1 ≤ b ≤ a ≤ 5000

题解:
在这里插入图片描述

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

const int N = 5010;
int primes[N], cnt;	//cnt存的是质数的个数
int sum[N];	//sum[i]中所存的是对于每个i计算a/b*(a-b)中p的个数
bool st[N];	//st用来标记是否为非质数

//线性筛质数
void get_primes(int n) {
	for (int i = 2; i <= n; i++) {
		if (!st[i])	primes[cnt++] = i;

		for (int j = 0; primes[j] * i <= n; j++) {
			st[primes[j] * i] = true;
			if (i % primes[j] == 0)	break;
		}

	}
}

//取a中p的个数
int get(int a, int p) {
	int res = 0;
	while (a) {
		res += a / p;
		a /= p;
	}
	return res;
}

//高精度乘法
vector<int> mul(vector<int> a, int b) {
	vector<int> c;
	int t = 0;
	for (int i = 0; i < a.size(); i++) {
		t += a[i] * b;
		c.push_back(t % 10);
		t /= 10;
	}
	while (t) {
		c.push_back(t % 10);
		t /= 10;
	}
	return c;
}

int main() {
	int a, b;
	cin >> a >> b;

	get_primes(a);

	for (int i = 0; i < cnt; i++) {	//所循环的次数为cnt的大小,也就是所有质数的个数
		int p = primes[i];
		sum[i] = get(a, p) - get(b, p) - get(a - b, p);	//将对每个i中所有的p的个数运算后的个数存在sum数组中
	}

	vector<int> res;
	res.push_back(1);

	for (int i = 0; i < cnt; i++) {	//外层循环的次数为总的质数的个数
		for (int j = 0; j < sum[i]; j++) {	//内层循环的次数为对于每个i中p的个数(p的个数即为primes[i]的个数
			res = mul(res, primes[i]);
		}
	}//所达到的最终结果即对结果res乘以每个质数的sum[i]次方

	for (int i = res.size() - 1; i >= 0; i--) {
		cout << res[i];	//倒序输出
	}
	return 0;
}

满足条件的01序列(卡特兰数)

给定 n 个 0 和 n 个 1,它们将按照某种顺序排成长度为 2n 的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中 0 的个数都不少于 1 的个数的序列有多少个。
输出的答案对 109+7 取模。

输入格式
共一行,包含整数 n。

输出格式
共一行,包含一个整数,表示答案。

数据范围
1 ≤ n ≤ 10^5

注意题上所要求的是0的个数不少于1的个数的序列
关于卡特兰数的应用:(在数轴上表示即为0代表往右走一位,1代表往上走一位)
要想使0的个数不少于1的个数则必须在图中绿线上或绿线的下方,也就是整个红线的下方
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include<iostream>
using namespace std;
typedef long long LL;
const int N = 2e5 + 10, mod = 1e9 + 7;

int n;
int fact[N], infact[N];

//定义快速幂
int qmi(int a, int k) {
	int res = 1;
	while (k) {
		if (k & 1)	res = (LL)res * a % mod;

		a = (LL)a * a % mod;
		k >>= 1;
	}
	return res;
}

//对fact和infact数组进行初始化
void init() {
	fact[0] = infact[0] = 1;
	for (int i = 1; i < N; i++) {
		fact[i] = (LL)fact[i - 1] * i % mod;
		infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2) % mod;
	}
}

int main() {
	init();
	cin >> n;
	int res = (LL)fact[2 * n] * infact[n] % mod * infact[n] % mod * qmi(n + 1, mod - 2) % mod;
	cout << res << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值