2. 高精度

1. 高精度加法

给定两个正整数(不含前导 0),计算它们的和。

输入格式
共两行,每行包含一个整数。

输出格式
共一行,包含所求的和。

数据范围
1 ≤ 整数长度 ≤ 100000
#include<iostream>
#include<vector>
using namespace std;

//定义高精度假发函数
vector<int> add(vector<int>& A, vector<int>& B) {	//通过引用提高效率
	vector<int> C;

	int t = 0;	//定义A和B在某一位的和
	
	for (int i = 0; i < A.size() || i < B.size(); i++) {
		//将A和B的对应位加起来赋值给t
		if (i < A.size())	t += A[i];
		if (i < B.size())	t += B[i];

		C.push_back(t % 10);
		t /= 10;
	}
	if (t)	C.push_back(t);	//若t还有则再向前进最后一位
	return C;
}

int main() {
	string a, b;	//由于数据范围较大,所以直接当作字符串进行输入
	cin >> a >> b;
	vector<int> A, B;

	//把输入存入A,B中,并注意所输入的数据类型为int,转化为字符串要 - '0'
	for (int i = a.size() - 1; i >= 0; i--) {
		A.push_back(a[i] - '0');
	}
	for (int i = b.size() - 1; i >= 0; i--) {
			B.push_back(b[i] - '0');
	}

	auto C = add(A, B);

	for (int i = C.size() - 1; i >= 0; i--) {
		cout << C[i];
	}
	return 0;
}

2. 高精度减法

给定两个正整数(不含前导 0),计算它们的差,计算结果可能为负数。

输入格式
共两行,每行包含一个整数。

输出格式
共一行,包含所求的差。

数据范围
1 ≤ 整数长度 ≤ 10^5

在做减法时有两个注意的点

  • 第一是要判断两个数的相对大小,防止出现负值
  • 第二是在两个数相减之后得到的数高位可能为零,所以要删去
#include<iostream>
#include<vector>
using namespace std;

//判断A与B的大小关系
bool cmp(vector<int>& A, vector<int>& B) {
	//首先根据位数判断
	if (A.size() != B.size()) return A.size() > B.size();

	//接着根据第一个不同数的大小判断
	for (int i = A.size() - 1; i >= 0; i--) {
		if (A[i] != B[i]) return A[i] > B[i];
	}
	return true;
}

vector<int> sub(vector<int>& A, vector<int>& B) {
	vector<int> C;

	int t; //用t表示上一位向当前位的借位,同时表示本位的结果
	for (int i = 0, t = 0; i < A.size(); i++) {
		t = A[i] - t;
		if (i < B.size()) t -= B[i];

		C.push_back((t + 10) % 10); //将结果存储到C中,用(t + 10) % 10来拟合t大于零和小于零的两种情况

		if (t < 0) t = 1;
		else t = 0;
	}

	while (C.size() > 1 && C.back() == 0) {
		C.pop_back(); //当结果不为零且高位为零时将末尾也就是高位零弹出
	}

	return C;
}

int main() {
	string a, b;
	cin >> a >> b;

	vector<int> A, B;
	for (int i = a.size() - 1; i >= 0; i--) {
		A.push_back(a[i] - '0');
	}
	for (int i = b.size() - 1; i >= 0; i--) {
		B.push_back(b[i] - '0');
	}

	//A > B时直接输出两者的差值
	if (cmp(A, B)) {
		auto C = sub(A, B);
		for (int i = C.size() - 1; i >= 0; i--) {
			cout << C[i];
		}
	}

	//A < B时先输出一个负号再输出相反的差值
	else {
		auto C = sub(B, A);
		cout << "-";
		for (int i = C.size() - 1; i >= 0; i--) {
			cout << C[i];
		}
	}
	return 0;
}

3.高精度乘法

给定两个非负整数(不含前导 0) A 和 B,请你计算 A×B 的值。

输入格式
共两行,第一行包含整数 A,第二行包含整数 B。

输出格式
共一行,包含 A×B 的值。

数据范围
1 ≤ A的长度 ≤ 100000,
0 ≤ B ≤ 10000

进行高精度减法的思路即为将较小的乘数作为一个整体,进行多位乘一位的运算

#include<iostream>
#include<vector>
using namespace std;

vector<int> mul(vector<int>& A, int b) {
	int t = 0;
	vector<int> C;

	for (int i = 0; i < A.size() || t; i++) {
		if (i < A.size())	t += A[i] * b;
		C.push_back(t % 10);
		t /= 10;
	}
	while (C.size() > 1 && C.back() == 0)	C.pop_back();
	return C;
}

int main() {
	string a;
	int b;
	cin >> a >> b;

	vector<int> A;
	for (int i = a.size() - 1; i >= 0; i--) {
		A.push_back(a[i] - '0');
	}

	auto C = mul(A, b);

	for (int i = C.size() - 1; i >= 0; i--) {
		cout << C[i];
	}

	return 0;
}

4. 高精度除法

思路跟减法类似,也是将被除数作为一个整体来进行计算

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

int r;	//存储余数,同时也存储每一位运算的结果

vector<int> div(vector<int> A, int b) {
	vector<int> C;

	for (int i = 0; i < A.size(); i++) {
		r = r * 10 + A[i];	//每往下循环一次余数都要*10,同时是作为下一位计算时的除数
		C.push_back(r / b);
		r = r % b;
	}

	reverse(C.begin(), C.end());	//由于是从高位进行计算所以多余的前置零不在末尾而vector只能弹出末尾所以要转置

	while (C.size() > 1 && C.back() == 0)	C.pop_back();
	return C;
}

int main() {
	string a;
	int b;
	cin >> a >> b;

	vector<int> A;
	for (int i = 0; i < a.size(); i++)	A.push_back(a[i] - '0');	//由于除法的操作是从高位开始所以按顺序存储

	auto C = div(A, b);

	for (int i = C.size() - 1; i >= 0; i--)	cout << C[i];	//由于在函数中为了消去前置0将数组转置了所以在此处还是要倒着输出
	cout << endl << r;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值