一篇文章彻底解决二分查找的两种情况

本文深入探讨了二分查找的两种情况:左开右开和左闭右开,详细解析了它们的区别,并提供了对应的代码示例。尽管这两种情况在代码实现上略有差异,但其时间复杂度和空间复杂度均为O(log n)和O(1)。
摘要由CSDN通过智能技术生成

二分查找

情况一 左开右开

情况一和情况二最大的区别就是,left和right的定义的区别
int left = 0;
int right = nums.size() - 1; 
// 定义target在左闭右闭的区间里,[left, right]
这种情况当中 left 指向第一个元素, right 指向最后一个元素
每次通过 left + ((left - right) >> 1) 来判断 mid 处元素与要寻找的 target 元素的大小,如果等于就返回,小于就将 right = mid -1,大于就将 left = mid + 1
此时循环的判断条件 left <= right, 当 left == right 的时候,left + right / 2 = left = right, 此时还要判断一下 left,right 指向的元素是不是 target
下面是对 1,2,3,4,7,9,10 这个数组用情况一来进行二分的示意图
奇数情况:

 

偶数情况:

 

当最后返回值的时候 nums[mid] ==
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值