springboot毕设项目食品安全信息管理系统xkp4q(java+VUE+Mybatis+Maven+Mysql)

springboot毕设项目食品安全信息管理系统xkp4q(java+VUE+Mybatis+Maven+Mysql)

项目运行

环境配置:

Jdk1.8 + Tomcat8.5 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。

项目技术:

Springboot + mybatis + Maven + Vue 等等组成,B/S模式 + Maven管理等等。

环境需要

1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。

2.IDE环境:IDEA,Eclipse,Myeclipse都可以。推荐IDEA;

3.tomcat环境:Tomcat 7.x,8.x,9.x版本均可

4.硬件环境:windows 7/8/10 1G内存以上;或者 Mac OS;

5.是否Maven项目: 否;查看源码目录中是否包含pom.xml;若包含,则为maven项目,否则为非maven项目 

6.数据库:MySql 5.7/8.0等版本均可;

技术栈

1. 后端:Springboot mybatis

2. 前端:vue+css+javascript+jQuery+easyUI+highcharts

使用说明

1. 使用Navicat或者其它工具,在mysql中创建对应名称的数据库,并导入项目的sql文件;

2. 使用IDEA/Eclipse/MyEclipse导入项目,修改配置,运行项目;

3.管理员账号:abo 密码:abo

4.开发环境为Eclipse/idea,数据库为mysql 使用java语言开发。

5.运行SpringbootSchemaApplication.java 即可打开首页

6.数据库连接src\main\resources\application.yml中修改

7.maven包版本apache-maven-3.3.9.

8.后台路径地址:localhost:8080/项目名称/admin

 

 

 

 

解释:def conjugate_gradient(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the conjugate gradient algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 xk = x0 # Sets the initial step guess to dx ~ 1 old_old_fval = old_fval + np.linalg.norm(gfk) / 2 pk = -gfk x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) sigma_3 = 0.01 while (gnorm > tol) and (k < iterations): deltak = np.dot(gfk, gfk) cached_step = [None] def polak_ribiere_powell_step(alpha, gfkp1=None): xkp1 = xk + alpha * pk if gfkp1 is None: gfkp1 = grad(xkp1) yk = gfkp1 - gfk beta_k = max(0, np.dot(yk, gfkp1) / deltak) pkp1 = -gfkp1 + beta_k * pk gnorm = np.amax(np.abs(gfkp1)) return (alpha, xkp1, pkp1, gfkp1, gnorm) def descent_condition(alpha, xkp1, fp1, gfkp1): # Polak-Ribiere+ needs an explicit check of a sufficient # descent condition, which is not guaranteed by strong Wolfe. # # See Gilbert & Nocedal, "Global convergence properties of # conjugate gradient methods for optimization", # SIAM J. Optimization 2, 21 (1992). cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) alpha, xk, pk, gfk, gnorm = cached_step # Accept step if it leads to convergence. if gnorm <= tol: return True # Accept step if sufficient descent condition applies. return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk) try: alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, c2=0.4, amin=1e-100, amax=1e100, extra_condition=descent_condition) except _LineSearchError: break # Reuse already computed results if possible if alpha_k == cached_step[0]: alpha_k, xk, pk, gfk, gnorm = cached_step else: alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) k += 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log
06-06
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值