- 博客(41)
- 收藏
- 关注
原创 第四十天打卡
仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout。展平操作:除第一个维度batchsize外全部展平。彩色和灰度图片测试和训练的规范写法:封装在函数中。
2025-06-02 22:14:13
224
原创 第四十六天打卡
对之前的信贷项目,利用神经网络训练下,尝试用到目前的知识点让代码更加规范和美观。:尝试进入nn.Module中,查看他的方法。探索性作业(随意完成)
2025-05-30 22:15:16
121
原创 第三十五天打卡
三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化。进度条功能:手动和自动写法,让打印结果更加美观。作业:调整模型定义时的超参数,对比下效果。推理的写法:评估模式。
2025-05-29 21:03:59
163
原创 第三十四天打卡
类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)ps:在训练过程中可以在命令行输入nvida-smi查看显存占用情况。GPU训练的方法:数据和模型移动到GPU device上。CPU性能的查看:看架构代际、核心数、线程数。GPU性能的查看:看显存、看级别、看架构代际。
2025-05-28 22:16:50
178
原创 第三十三天打卡
查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。定义损失函数和优化器。
2025-05-27 22:21:07
203
原创 第三十一天打卡
尝试针对之前的心脏病项目ipynb,将他按照今天的示例项目整理成规范的形式,思考下哪些部分可以未来复用。│ └── processed/ # 处理后的数据。│ ├── config.py # 配置参数。│ └── utils.py # 工具函数。a) 数据预处理模块 (data_preprocessing.py)b) 通用模型模块 (model.py)"""构建可配置的分类模型""""""加载原始数据集""""""绘制ROC曲线"""
2025-05-25 19:02:29
674
原创 第三十天打卡
├── utils/└── lib/# main.pyimport syssys.path.append("./utils") # 将 utils 目录添加到搜索路径from math_tools import add # 导入自定义模块from .math_tools import add # 相对导入语法# 终端中设置环境变量(临时生效)# main.pyimport helper # 直接导入 lib/helper.py@浙大疏锦行。
2025-05-24 22:29:51
192
原创 第二十九天打卡
这段学习历程不仅是技术积累,更是从面向过程到面向对象思维的跨越,让我深刻理解Python作为AI首选语言的魅力——它用简洁语法承载复杂逻辑,为探索智能世界铺就坚实基石。复习类和函数的知识点,写下自己过去29天的学习心得,如对函数和类的理解,对python这门工具的理解等,未来再过几个专题部分我们即将开启深度学习部分。在过去的29天里,我系统性地梳理了Python函数与类的核心知识,并深刻体会到编程思维的转变过程。的动态参数机制,理解LEGB作用域规则后,闭包与装饰器的实践(如用。
2025-05-23 22:24:35
335
原创 第二十八天打卡
calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。shape_type="circle":创建圆(参数:半径)。calculate_area():计算面积(公式:长×宽)。
2025-05-22 20:19:21
216
原创 第二十六天打卡
编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。编写一个名为 calculate_average 的函数,该函数可以接收任意数量的数字作为参数(引入可变位置参数 (*args)),并返回它们的平均值。编写一个名为 print_user_info 的函数,该函数接收一个必需的参数 user_id,以及任意数量的额外用户信息(作为关键字参数)。如果长度或宽度为负数,函数应该返回 0。的函数,该函数接收图形的名称。
2025-05-20 22:17:17
400
原创 第二十三天打卡
整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline。ColumnTransformer和Pipeline类。构建完整pipeline。转化器和估计器的概念。pipeline代码。
2025-05-17 22:31:06
169
原创 第二十一天打卡
自由作业:探索下什么时候用到降维?或者让ai给你出题,群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可视化的区别。
2025-05-15 22:21:19
184
原创 第十七天打卡
参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。推断簇含义的2个思路:先选特征和后选特征。科研逻辑闭环:通过精度判断特征工程价值。通过可视化图形借助ai定义簇的含义。
2025-05-12 21:42:24
218
原创 第十四天打卡
尝试确定一下shap各个绘图函数对于每一个参数的尺寸要求,如shap.force_plot力图中的数据需要满足什么形状?确定分类问题和回归问题的数据如何才能满足尺寸,分类采取信贷数据集,回归采取单车数据集。参考文档补全剩余的几个图。
2025-05-08 22:10:25
204
原创 第十二天打卡
今天以的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。
2025-05-05 21:51:03
173
原创 第十一天打卡
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")rf_pred = rf_model.predict(X_test) # 在测试集上预测。print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")rf_model.fit(X_train, y_train) # 在训练集上训练。print("\n默认随机森林 在测试集上的分类报告:")print("默认随机森林 在测试集上的混淆矩阵:")# --- 1. 默认参数的随机森林 ---
2025-05-04 22:23:32
321
原创 第五天打卡
现在在py文件中 一次性处理data数据中所有的连续变量和离散变量。3. 对独热编码后的变量转化为int类型。2. 对离散变量进行one-hot编码。4.对所有缺失值进行填充。1. 读取data数据。
2025-04-26 22:03:01
209
原创 第四天打卡
按照示例代码的要求,去尝试补全信贷数据集中的数值型缺失值。打开数据(csv文件、excel文件)查看数据(尺寸信息、查看列名等方法)初识pandas库与缺失数据的补全。利用循环补全所有列的空值。众数、中位数填补空值。
2025-04-25 21:42:29
189
原创 第三天打卡
创建一个包含三个字符串元素的列表 tech_list,元素分别为 “Python”, “Java”, “Go”。修改 tech_list 中的第二个元素(索引为 1),将其从 “Java” 更改为 “Ruby”。定义一个包含整数的列表 scores,赋值为 [85, 92, 78, 65, 95, 88]。计算当前 tech_list 的长度,并将结果存储在变量 current_length 中。- 28-35度:打印"黄色预警:天气炎热"- 20-27度:打印"绿色提示:适宜温度"
2025-04-24 22:42:57
412
原创 第二天打卡
题目: 定义两个整数变量,score_a 赋值为 75,score_b 赋值为 90。比较 score_a 是否大于 score_b,将比较结果(布尔值)存储在变量 is_a_higher 中;比较 score_a 是否小于等于 score_b,将结果存储在变量 is_a_lower_or_equal 中;比较 score_a 是否不等于 score_b,将结果存储在变量 is_different 中。题目: 定义两个字符串变量,str1 赋值为 “Hello”,str2 赋值为 “Python”。
2025-04-23 19:55:05
238
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅