关于举办“深度学习驱动的油气开发技术与应用”专题培训会的通知
一、背景:
在深度学习与油气开发领域融合的背景下,科研边界持续扩展,创新成果不断涌现。从基本
物理模型构建到油气开发问题的复杂模拟,从数据驱动分析到工程问题的智能解决,深度学习正
以前所未有的动力推动油气开发领域的革新。以下是深度学习在油气开发领域应用的几个方面:
1.
油气产量预测:
深度学习技术已经被大量应用于油气产量预测,在解决复杂环境下的精准产
量预测时表现卓越。通过结合地质、工程和地球物理等多元信息,深度学习模型能够有效地
识别出影响油气产量的关键因素。
2.
测井解释:
深度学习在测井方向的应用,既能做自动岩性、岩石类型、沉积微相识别,也可
以做储层物性解释,特别是非常规油藏的测井解释,如裂缝孔隙度解释,合成曲线的生成等。
3.
油藏工程
:在油藏工程方面,深度学习在油藏数值模拟、非常规油藏产量预测、流体参数预
测等方向表现出了广阔的应用前景。
4.
油气开采优化:
深度学习技术在油气开采优化技术中的应用,包括气体探测技术、储层预测
分析技术以及安全监测技术。
5.
自动数据处理和解释:
数据挖掘和数理统计在石油勘探开发中的应用十分成功,在测井曲线
解释、储层参数预测等工作中得到了广泛应用。深度学习、集成学习、迁移学习等技术未来
有望在岩石物理、地震图像、测井曲线等数据的自动化处理与分析中得到深入应用。
为促进科研人员、工程师及产业界人士对深度学习在油气开发领域应用技术的掌握,特举办
“深度学习驱动的油气开发技术与应用”专题培训会,本次培训会议主办方为
北京软研国际信息
技术研究院
,承办方
互动派(北京)教育科技有限公司
,具体相关事宜通知如下:
二、培训对象:
地质学、建筑科学与工程、矿业工程、安全科学与灾害防治、公路与水路运输、水利水电工程、
石油天然气工业、地球物理学、环境科学与资源利用、自动化技术等领域的科研人员、工程师、及相 关行业从业者、跨领域研究人员。
三、培训大纲:
深度学习驱动的油气开发技术与应用专题培训会大纲
油气开发工程
物理模型基础
1.
油气开发工程中的基本数学物理模型及工程问题
1.1.
裂缝性储层流体流动模型:等效连续介质模型、离散裂缝网络模型
1.2.
油气藏流体连续介质模拟及数值模拟方法
1.2.1.
连续介质模型
1.2.2.
有限差分法(FDM)
1.2.3.
有限体积法(FVM)
1.2.4.
有限元法(FEM)
1.3.
油气藏开发中的提高采收率技术:化学驱等多种提高原油采收率的方
法,以及如何通过物理法、化学法提高油气采收率机制和工程设计
1.4.
非常规油气藏的压裂设计和开发模拟
1.4.1.
油藏地质建模
1.4.2. 压裂裂缝扩展数值模拟
1.5.
偏微分方程(PDE)在油气开发中的作用和体现
1.6.
偏微分方程求解方法概述
Python 深度学
习神经网络基础
2.
Python 基本指令及库
2.1.
Python 基础:通过交互式编程环境,教授 Python 基础,包括数据类
型和逻辑运算等。
2.2.
科学计算库:介绍 NumPy 和 Matplotlib,并讲授如何使用它们进行科
学计算和数据可视化。
实战演练:基于简单 NumPy 指令解决油气开发工程分类问题
2.3.
神经网络构建:通过简单的实例,如使用 NumPy 构建感知机,教授神
经网络的基本概念。
2.4.
深度学习框架:通过 TensorFlow 和 PyTorch 的实例,教授如何构建和
训练用于油气开发工程问题的深度学习模型。
实战演练:基于 PyTorch 模块求解
深度学习 PDE 求
解
3.
基于深度学习的 PDE 求解方法
3.1.
深度学习求解 PDE 的方法
3.1.1.
简单 PDE 的物理信息神经网络(PINN):将物理方程作为神经
网络的约束条件,确保网络输出符合物理规律。
算例实现:Burgers 方程;扩散方程等
3.1.2.
渗流方程的物理信息神经网络(PINN):基于深度学习框架的
渗流方程求解方法。
算例实现:单相渗流方程求解
3.2.
优势和挑战:分析深度学习求解 PDE 的优势,以及面临的挑战。
深度学习参数
反演
4.
基于深度学习的参数反演
4.1.
参数反演在油气开发中的重要性作用
4.2.
基于深度学习的自动反演方法:
4.2.1.
数据驱动下的自动试井解释方法:基于卷积网络的自动试井解
释方法,提高解释速度和准确性
算例实现:
Automatic well test interpretation method for circular
reservoirs with changing wellbore storage by using one-dimensional
convolutional neural network, Journal of Energy Resources Technology. 2023
4.2.2.
物理驱动下的自动试井解释方法:基于全连接神经网络的自动
试井解释方法,提高解释速度和准确性
算例实现:利用残差神经网络反演储层中的渗透率 K
(Surrogate
modeling for porous flow using deep neural networks, Journal of Petroleum
Science and Engineering, 2022, https://doi.org/10.1016/j.petrol.2022.110460.)
论文复现与应用
5.
深度学习在油气开发中的应用:论文复现
5.1.
BP 神经网络隐式法在测井数据中的应用研究:利用 BP 神经网络进行
测井数据分析
参考文献: Implicit Approximation of Neural Network and Applications. SPE
Res Eval & Eng 2009,12 (6): 921-928.
5.2.
神经网络在测井数据预测中的应用研究:侧重如何利用物理信息提高
预测精度
参考文献:硕士论文
5.3.
油气水流动的三维多相多组分非定常偏微分方程组的建立、求解及应
用研究:探讨如何建立和求解复杂的 PDE 方程组,并在油气开发中应
用
参考文献:Surrogate modeling for porous
fl
ow using deep neural networks,
Journal of Petroleum Science and Engineering, 2022, 213, 110460
5.4.
人工智能技术在油气开发中的应用研究:特别是在处理大数据方面的
应用,如气田开发。
参考文献:Deep learning-based analysis of the main controlling factors of
different gas-fields recovery rate, Energy,2023, 285, 15, 128767, (代码不公
开)
5.5.
基于非结构 PEBI 网格的水驱、化学驱、致密油、页岩气开发中的流动
规律数值模拟软件的研发与应用介绍:介绍系列工业软件,这些软件
在解决生产制度优化、井网优化等关键技术难题中的应用
进展与展望
6.
人工智能方法在油气田开发中的应用:进展与展望
6.1.
总结人工智能方法在油气田开发研究领域的进展:包括数据驱动方法、
物理驱动人工神经网络 PDE 求解器和数据与物理共同驱动方法。
6.2.
未来发展趋势:探讨大语言模型在油气田开发中的应用潜力。
四、主讲老师:
“双一流”及“211 工程”建设高校教授带领团队讲授。研究方向:偏微分方程智能求解方
法,油气藏流动大模型,油气大数据,工业软件研发等。代表性成果:揭示致密油藏流动规律的
物理机制,提出了具有颠覆性的偏微分方程智能求解方法,建立系列智能反演新方法,建立了系
列油气水流动新模型与新方法。发表论文 100 多篇,其中 SCI 收录 70 余篇;授权发明专利 15 项。
五、培训时间:
2025 年 01 月 18 日-01 月 21 日 在线直播(授课 4 天)
六、报名费用:
每人¥4500 元(含报名费、培训费、资料费)
2025 年 1 月 1 日前报名缴费可享受 200 元早鸟价优惠;
参加过我单位举办的其它课程的老学员,可享受额外 200 优惠;
费用提供用于报销的正规机打发票及盖有公章的纸质通知文件;
如需开具会议费的单位请联系招生老师索取会议邀请函;
七、增值服务:
1、凡报名学员将获得本次培训电子课件及案例模型文件;
2、培训结束可获得本次所学专题课程全部无限次回放视频;
3、参加培训并通过试的学员,可以获得:主办方北京软研国际信息技术研究院培训中心颁
发的《
深度学习油气开发技术与应用工程师
》专业技能结业证书;
八、联系方式:
官方联系人:互动派科宇老师
电话、微信:13520456594
官方座机:010-56245524
官方网址:www.hdpaii.com