- 博客(49)
- 收藏
- 关注
原创 了解 PyTorch 学习率调整和迁移学习
本文介绍了深度学习中的学习率调整策略与迁移学习技术。学习率调整包括有序调整(StepLR、CosineAnnealingLR等)、自适应调整(ReduceLROnPlateau)和自定义调整方法。迁移学习利用预训练模型(如ResNet)加速训练,通过冻结初始层、修改输出层并逐步解冻微调来实现。文章提供了PyTorch代码示例,展示了如何加载预训练模型、调整网络结构、设置优化器和学习率调度器,以及实施迁移学习的完整流程。这些技术能显著提高模型训练效率和性能,特别适用于数据有限的应用场景。
2026-01-07 19:58:39
1013
原创 OpenCV图像处理部分基础操作
本文介绍了OpenCV图像处理的基础操作,主要包括四个部分:1) 图像像素操作,包括区域打码和复制;2) 图像缩放方法,支持指定尺寸或缩放因子;3) 图像运算操作,包括加法、加权运算等;4) 图像平滑处理技术,涵盖均值滤波、方框滤波和高斯滤波等去噪方法。文中提供了详细的Python代码示例和参数说明,演示了如何实现常见的图像处理功能,适合OpenCV初学者学习基础图像处理技术。
2026-01-06 19:21:06
610
原创 了解 TF-IDF
TF-IDF是一种经典的文本统计方法,通过结合词频(TF)和逆文档频率(IDF)评估词语重要性。TF衡量词语在单文档中的出现频率,IDF反映词语在整个文档集中的稀有程度。两者相乘得到TF-IDF值,数值越高表示词语区分能力越强。该方法广泛应用于关键词提取、文本分类等场景,但存在忽略词序、语义等局限性,需配合预处理步骤使用。
2025-12-31 23:03:57
910
原创 基于 PyTroch 的卷积神经网络在图像分类中应用与实践
本文介绍了卷积神经网络(CNN)在图像分类中的应用与实践。详细阐述了CNN基础架构,包括三个卷积块的设计、参数配置及特征提取机制。通过数据预处理流程和多种增强策略(随机旋转、翻转、色彩调整等)提升模型鲁棒性。采用Adam优化器和交叉熵损失函数进行模型训练与优化,实现自动学习层次化特征。实验结果表明,该CNN模型能够高效完成图像分类任务,并通过模型保存机制保留最佳性能状态。
2025-12-30 20:30:58
1001
原创 了解卷积神经网络
本文系统介绍了卷积神经网络(CNN)的基本结构、工作原理及经典模型。CNN由卷积层、池化层和全连接层组成,通过卷积核提取局部特征,池化层降采样增强鲁棒性。其工作原理包括图像表示、特征提取与感受野概念。经典模型如LeNet、AlexNet、VGGNet、GoogLeNet、ResNet和DenseNet在结构创新上各具特色,推动了CNN在图像识别等领域的成功应用。
2025-12-29 19:47:04
934
原创 基于 Python 使用 SVM、K-means与DBSCAN
本文介绍了三种机器学习算法的实现与应用:支持向量机(SVM)、K-means聚类和DBSCAN密度聚类。SVM部分详细讲解了线性核函数的使用、参数调优(如正则化参数C的选择)以及标准化处理和交叉验证方法。K-means部分重点阐述了通过轮廓系数确定最佳聚类数的方法,并展示了可视化过程。DBSCAN部分则强调了数据标准化的重要性,解析了邻域半径(eps)和最小样本数(min_samples)参数的影响。三种算法均提供了完整的代码实现流程和评估方法,包括分类报告、轮廓系数计算和噪声点分析,为不同机器学习任务提供
2025-12-28 19:01:07
874
1
原创 SVM、K-means与DBSCAN 算法简介
本文介绍了三种机器学习算法:支持向量机(SVM)、K-means聚类和DBSCAN聚类。SVM是一种监督学习算法,通过寻找最优超平面实现分类,涉及惩罚参数C和核函数选择。K-means是无监督聚类算法,通过迭代优化簇中心来最小化平方误差和,关键参数为簇数K。DBSCAN是基于密度的聚类算法,根据邻域半径eps和最小样本数min_samples自动划分任意形状的簇并识别噪声点。三种算法分别适用于分类、常规聚类和密度聚类任务。
2025-12-27 21:35:30
875
原创 OpenCV 入门:图像与视频的基础操作
本文介绍了OpenCV的基础操作,包括环境准备、图像处理和视频处理。首先通过pip安装OpenCV并检查版本,然后详细讲解图像读取、显示和属性获取方法。图像处理部分涵盖裁剪、通道分离与合并等操作,并演示颜色过滤效果。视频处理部分说明如何从文件或摄像头捕获视频流,进行帧读取和灰度转换,最后强调资源释放的重要性。通过代码示例和参数解析,帮助读者快速掌握OpenCV的基础功能。
2025-12-26 20:23:23
1489
原创 PyTorch:基于MNIST的手写数字识别
本文介绍了使用PyTorch框架构建深度学习模型处理MNIST手写数字识别的完整流程。首先配置开发环境并加载MNIST数据集,通过DataLoader实现批量处理。设计了一个包含多个全连接层的神经网络模型,使用Sigmoid激活函数。详细说明了训练和评估过程,包括损失函数(CrossEntropyLoss)和优化器(SGD)的选择。实验结果表明,该模型在MNIST数据集上取得了较好的分类效果。整个过程展示了PyTorch框架在深度学习任务中的典型应用方法。
2025-12-25 20:42:26
911
原创 搭建PyTorch深度学习GPU开发环境(含CUDA、PyTorch、Vision及Audio库)
本文详细介绍了在Windows系统上搭建支持GPU加速的PyTorch深度学习环境的完整流程。主要内容包括:理解CUDA、PyTorch、torchvision和torchaudio等核心组件的作用;通过nvidia-smi确认显卡驱动版本并安装匹配的CUDA工具包;使用pip安装与CUDA版本兼容的PyTorch及相关库;最后通过Python代码验证安装是否成功,特别是检查CUDA是否可用。文章还提供了常见问题的解决方案,如命令不识别、CUDA不可用等问题。该指南为深度学习开发者提供了清晰的环境配置参考。
2025-12-24 21:00:00
1469
原创 深度学习入门
本文介绍了深度学习的基础概念与关键技术。首先阐述了深度学习作为机器学习分支的核心地位及其应用价值。随后详细讲解了神经网络的基本构成,包括神经元、权重计算和激活函数的作用。接着从感知器过渡到多层感知器,分析了隐藏层的意义和结构设计要点。重点说明了神经网络的训练方法,涵盖损失函数、梯度下降算法和反向传播机制。最后讨论了防止过拟合的正则化技术及学习率优化策略。全文系统性地梳理了深度学习的基础理论和实现方法。
2025-12-23 20:17:34
894
原创 Python 操作 MySQL 数据库
本文介绍了使用Python的pymysql库操作MySQL数据库的方法。主要内容包括:1) 数据库连接配置;2) 通过游标执行SQL语句的两种方式(字符串拼接不推荐,参数化查询推荐);3) 批量插入数据和事务管理;4) 结果集获取方法;5) 使用with语句自动管理资源。重点强调了参数化查询防止SQL注入的优势,以及事务提交、回滚和资源自动释放的重要性。通过示例代码展示了数据库操作的最佳实践。
2025-12-22 19:24:13
1245
原创 基于 Python 库使用贝叶斯算法与逻辑森林
本文摘要: 文章详细解析了朴素贝叶斯和随机森林两种机器学习算法的代码实现,使用spambase数据集进行垃圾邮件分类。朴素贝叶斯部分介绍了核心库导入、混淆矩阵可视化、数据预处理、模型训练(MultinomialNB)及评估指标(精确率、召回率、F1分数)。随机森林部分重点解析了关键参数(如n_estimators、max_features)、特征重要性分析及模型评估。两者均通过混淆矩阵热力图和分类报告展示性能,其中随机森林额外通过特征排序可视化突出了关键判别特征。实验结果表明,两种算法在该二分类任务中均表现
2025-12-21 20:03:17
657
原创 逻辑森林与贝叶斯算法简介
本文介绍了两种常用分类算法:逻辑森林(随机森林)和朴素贝叶斯。随机森林通过多棵决策树集成提高分类性能,采用自助采样、随机特征选择和投票机制。朴素贝叶斯基于贝叶斯定理,假设特征独立,通过概率计算进行分类。比较显示:随机森林适合复杂非线性关系和大数据场景,而朴素贝叶斯更适合特征独立、小数据和快速部署的任务。选择算法需考虑数据特性、计算效率和精度需求。
2025-12-20 23:08:59
861
原创 MySQL 学习
本文系统介绍了SQL语法规范与数据库操作指南,主要内容包括: SQL基础:语法规范(分号结尾、大小写建议)和分类体系(DDL、DML、DQL、DCL) 数据库管理:创建/修改/删除数据库操作,表结构设计与维护(数据类型、建表、修改表结构) 数据操作:插入(单行/多行/查询结果)、更新(单表/子查询/批量)和删除数据(条件/关联删除) 数据查询:基础语法结构和列选择方式(全选/特定列/表达式计算) 文章提供了完整的SQL操作示例,涵盖从数据库创建到表管理、数据操作等核心功能,适合作为SQL入门参考手册。
2025-12-19 20:03:18
882
原创 决策树与回归树简介:原理、实现与应用
本文介绍了决策树的基本概念、分类与回归算法及其实现。决策树是一种有监督学习算法,通过树状结构对数据进行分类或回归预测。分类算法包括ID3(信息增益)、C4.5(信息增益率)和CART(基尼系数),回归树则以最小化均方误差为分裂标准。文章详细讲解了Scikit-learn中决策树的参数设置,并提供了Python实现示例,包括数据预处理、模型训练、评估(准确率、混淆矩阵、AUC-ROC曲线)以及剪枝策略(预剪枝和后剪枝)。通过可视化展示了模型评估结果,帮助理解决策树在实际应用中的表现。
2025-12-18 18:53:24
764
原创 pandas基础操作
一维带标签数组,类似于 Excel 中的单列数据。在实际项目中,数据往往来自多个源,需要合并处理。分组聚合是数据分析的核心,用于计算分组统计量。Pandas 提供了多种快速查看数据的方法。:二维表格型数据结构,是数据分析的主要载体。排序和索引操作用来对数据进行组织和整理。数据清洗用来在数据分析中确保数据质量。
2025-12-17 19:45:26
386
原创 基于Selenium的自动化Web数据采集实践
本文介绍了使用Selenium进行Web自动化操作的几种常见场景:1)环境配置与Edge浏览器启动;2)文件上传操作;3)搜索框交互;4)图片批量下载;5)分页数据抓取;6)商品信息采集。通过Python代码示例详细展示了各类操作的实现方法,包括元素定位、页面滚动、文件下载和分页处理等关键技术点。这些方法可应用于爬虫开发、自动化测试等场景,文中每个示例都配有运行效果截图和关键代码分析,为Web自动化操作提供了实用参考。
2025-12-16 20:33:45
2473
原创 数据处理:下采样与SMOTE过采样
本文探讨了信用卡欺诈检测中的两种数据不平衡处理技术:下采样和SMOTE过采样。首先对信用卡交易数据进行标准化预处理和可视化分析,显示正负样本严重不平衡。下采样通过随机减少多数类样本实现平衡,而SMOTE则通过生成合成样本增加少数类数量。文章详细展示了两种技术的实现代码,包括数据准备、模型训练和评估过程,并比较了它们的优缺点。实验结果表明,合理选择采样技术能显著提升模型在不平衡数据上的性能,特别是在召回率指标上。最后建议根据数据特性和计算资源选择合适的技术,下采样适合资源有限场景,而SMOTE更适合保留原始信
2025-12-15 21:04:43
960
原创 评估模型性能
本文介绍了分类模型性能评估方法与常见问题解决方案。首先通过混淆矩阵示例说明TP、FP、FN、TN等概念,并推导出准确率、精确率、召回率和F1分数的计算公式。其次针对欠拟合和过拟合问题,提出正则化、数据标准化(0~1和Z标准化)等技术手段。最后介绍了交叉验证和类别不平衡处理(如SMOTE过采样)的方法。这些技术能有效提升模型泛化能力和评估可靠性。
2025-12-14 20:39:45
706
原创 逻辑回归简介
逻辑回归(Logistic Regression)是一种广泛应用于分类问题的统计学习方法,尤其擅长处理二分类问题。尽管名字中带有"回归",但它实际上是一种分类算法。逻辑回归通过Sigmoid函数将线性回归的输出映射到(0,1)区间,从而得到样本属于某一类别的概率。
2025-12-13 20:00:00
956
原创 SQL 从基础操作到高级查询
本文系统介绍了SQL的核心知识体系,涵盖基础操作到高级查询技巧。主要内容包括:数据查询(SELECT)、增删改操作(INSERT/UPDATE/DELETE);高级查询方法如模糊匹配、排序分组、连接查询(JOIN);表结构管理(ALTER TABLE);SQL分类(DQL/DML/DDL/DCL/TCL)以及实用技巧如数据导入导出。文章提供了丰富的SQL示例代码,帮助读者全面掌握关系型数据库的操作方法,从基础语法到复杂查询实现,适合不同层次的SQL学习者参考使用。
2025-12-12 19:39:21
609
原创 线性回归与KNN算法的核心原理及实践应用
本文系统介绍了线性回归和KNN算法的原理及应用。线性回归部分详细阐述了模型构建、参数估计(极大似然估计和最小二乘法)及评价指标(相关系数、判定系数)。KNN算法部分解析了其基于距离度量的分类原理,并对比了优缺点。通过三个实践案例(广告销售预测、约会配对分类、鸢尾花分类)展示了算法实现过程,包含数据可视化、模型训练与评估。最后介绍了分类模型的评价指标(准确率、召回率等)和混淆矩阵的应用。全文理论与实践结合,为机器学习入门提供了清晰指导。
2025-12-11 20:16:08
808
原创 MySQL 表创建与数据导入导出
本文介绍了MySQL数据库表创建与数据导入导出的操作方法。创建表部分演示了使用Navicat和命令行两种方式建立学生表、成绩表和科目表。数据导入部分详细说明了Navicat导入向导、INSERT语句插入单条/多条数据以及从本地文件加载数据的方法。数据导出部分则介绍了使用Navicat导出向导和mysqldump命令行工具将数据导出为不同格式文件的操作流程。全文涵盖了数据库基础操作的主要环节,提供了可视化工具和命令行两种实现方式。
2025-12-10 17:10:48
341
原创 KNN算法
本文介绍了KNN算法的原理与实现。KNN是一种基于距离度量的懒惰学习算法,通过寻找k个最近邻进行投票分类。文章展示了三维数据可视化方法,并提供了KNN分类器的Python实现代码,包括数据预处理、模型训练和预测过程。重点强调了特征标准化对KNN算法的重要性,通过标准化确保各特征对距离计算的均衡贡献。代码示例演示了如何使用scikit-learn库实现KNN分类,并展示了不同k值对分类效果的影响。
2025-12-08 19:31:25
327
原创 MySQL 安装与配置指南(CentOS 7)
本文详细介绍了在CentOS 7系统上安装配置MySQL 5.7的完整流程。主要内容包括:1)系统准备工作(关闭防火墙、修改主机名、配置静态IP等);2)配置阿里云镜像源;3)MySQL安装步骤及服务管理;4)MySQL初始配置(获取临时密码、修改密码策略、设置root远程访问);5)修改MySQL编码为utf8mb4。文中提供了详细的操作命令和配置文件修改示例,涵盖从安装到配置的全过程,并包含服务启动验证和编码设置检查方法。
2025-12-07 19:40:28
767
原创 Python 学习-Day9-pandas数据导入导出操作
本文介绍了使用Pandas进行数据处理的基本操作。主要内容包括:1)数据导入,展示如何读取CSV、Excel和TXT格式文件;2)数据导出,说明如何将处理结果保存为CSV和Excel文件;3)缺失值处理,涵盖缺失值检测的三种方法(填充、删除和保留)。文章通过代码示例演示了各项操作的具体实现方式,包括参数设置和注意事项,为数据预处理提供了实用指南。
2025-12-06 20:46:24
313
原创 Python 学习-Day8-执行其他应用程序
本文介绍了Python中操作系统命令和获取系统信息的几种方法。主要内容包括:1)通过命令提示符窗口或终端执行程序;2)使用os库的system()和popen()方法执行命令并获取结果;3)利用sys库获取Python解释器版本、系统信息(如操作系统、安装路径等)以及通过exit()退出程序;4)使用sys.argv获取命令行参数,并展示了参数处理的示例代码。这些方法为Python程序与操作系统交互提供了多种途径。
2025-12-05 19:44:02
632
原创 Python 学习-Day8-Numpy相关操作
NumPy是Python科学计算的核心库,提供高效的数组操作功能。本文介绍了NumPy的安装、数组创建及基本操作。通过array()可将列表转为矩阵,支持一维到多维数组创建。数组属性包括shape、ndim等维度信息。reshape()和resize()实现数组升维,ravel()和flatten()用于降维。还介绍了创建全0/1数组的zeros()/ones()方法,以及填充指定值的full()函数。常用函数arange()和linspace()可生成数值序列。NumPy的矩阵运算能力使其成为数据分析和科
2025-12-04 21:23:17
905
原创 Python学习-Day7-操作文件夹
本文介绍了Python中os模块常用的文件路径和文件夹操作方法。主要内容包括:1)获取当前路径(os.getcwd);2)创建文件夹(os.mkdir/os.makedirs);3)路径拼接(os.path.join);4)路径跳转(os.chdir);5)路径判断(os.path.isabs);6)获取路径各部分(os.path.dirname/basename/split)。还介绍了文件操作如查询大小(os.path.getsize)、删除文件(os.remove)、重命名(os.rename)、复制(
2025-12-03 11:27:14
616
原创 HTML 基础知识
本文介绍了HTML网页的基本结构和常用标签。主要内容包括:HTML文档的基本骨架(DOCTYPE、html、head、body标签);常用标签如标题、段落、超链接、注释等;文本格式设置(字体、颜色、大小);多媒体元素(图片、音频、视频)的添加方法;容器(div)的使用和布局技巧;以及表格的创建方法(基本表格、表头、标题等)。文章通过代码示例和效果图展示了各类HTML元素的实际应用,适合初学者快速掌握HTML基础知识和常用标签的使用方法。
2025-12-02 19:39:52
961
原创 Python 学习-Day7-第三方库简介
本文介绍了Python中三个常用第三方库的使用方法。1)pip工具的基本命令,包括安装、卸载、查看库信息等;2)PyInstaller库的安装及打包命令,支持生成单文件可执行程序并添加图标;3)jieba中文分词库的三种模式(精确、全模式、搜索引擎)及添加新词功能。这些工具极大扩展了Python在包管理、程序打包和中文文本处理方面的能力,配有详细示例和效果图示。
2025-12-01 19:35:17
924
原创 Python 学习-Day6-部分库简介
本文介绍了Python中常用库的导入方法和标准库的使用技巧。主要内容包括:1)四种库导入方式(整体导入、函数导入、别名定义);2)时间库(time)的时间戳获取和时间格式化;3)随机库(random)的数值生成、选择和种子设置;4)正则表达式库(re)的字符串匹配、字符范围/次数表示、贪婪模式以及分组操作。通过示例代码演示了各库的核心功能,如时间处理、随机数生成和正则匹配等实用技巧,为Python数据处理提供了基础工具参考。
2025-11-30 21:16:06
895
原创 linux学习-Sell编程-test命令
本文介绍了Shell脚本中[[ ]]条件测试语法的优势与用法。作为[ ]的增强版,[[ ]]由Shell直接解析,具有更灵活的语法和更高的容错性。它支持文件、字符串、数值测试,并扩展了正则匹配、逻辑运算等功能。关键特性包括:使用&&/||替代-a/-o;支持通配符和正则表达式匹配;可直接用>/<比较;自动处理变量空值。需要注意的是空格规范、正则表达式不加引号等细节,且[[ ]]仅适用于bash环境,sh环境下仍需使用[ ]。
2025-11-29 20:16:15
632
原创 linux 学习-Shell输入/输出重定向
本文介绍了Unix/Linux系统中的重定向技术,包括输入输出重定向的基本概念和常用命令。重点讲解了标准输入(STDIN)、标准输出(STDOUT)和标准错误输出(STDERR)三种文件描述符的使用方法,以及如何通过>、>>、<等符号实现覆盖、追加和读取文件内容。文章还详细说明了合并输出流、双向重定向等高级用法,并介绍了/dev/null文件的特殊用途。通过多个实例演示了如何将命令输出重定向到文件、统计文件行数等常见操作,帮助读者掌握Shell重定向的核心技巧。
2025-11-28 20:17:58
498
原创 linux 学习-Shell-函数
本文介绍了Shell函数的定义与参数使用方法。函数定义格式支持带或不带function关键字,返回值可通过return指定或默认取最后命令结果。调用时通过$n获取参数(如$1为第一个参数),注意多位参数需用${n}格式。此外还介绍了特殊参数变量:$#表示参数个数,$*/$@显示所有参数,$?获取函数返回值状态。示例演示了基本函数定义、带return函数以及参数获取的具体用法。
2025-11-28 19:34:15
299
原创 Python 学习-Day5-操作文件
本文介绍了Python文件操作的基本知识,包括文件组成、编码方式、字符与Unicode转换函数(chr()和ord()),以及文件操作方法。详细讲解了open()函数的多种模式(r/w/a)、复合写法(with open)和文件读取方法(read/readline/readlines)。同时介绍了文件写入方法(write/writeline)、文件指针调整(seek())和路径类型(绝对/相对路径)。最后简要说明了CSV文件的格式特点。文章通过代码示例展示了各项操作的具体应用,为Python文件处理提供了实
2025-11-27 20:33:47
986
原创 Python 学习-“__name__”属性和匿名函数 lambda
本文介绍了Python中两个重要特性:__name__属性和匿名函数lambda。__name__属性用于判断当前模块是主程序还是被导入模块,通过if __name__ == '__main__':可进行模块测试而不影响主程序。匿名函数lambda提供了简洁的函数定义方式,既可直接作为函数使用,也可作为参数传递给其他函数(如sorted()的key参数)。这两种特性在Python开发中常用于模块测试和简化代码逻辑。
2025-11-26 09:43:16
107
原创 Linux 学习-Shell
Shell基础教程摘要:本文介绍了Shell脚本的基础知识与应用。Shell作为Linux系统的命令语言和程序设计语言,是用户与系统交互的桥梁。主要内容包括:1) Shell脚本创建与运行方法,如通过.sh文件和解释器执行;2) 变量定义与使用,包括字符串操作、参数传递和数组处理;3) 基本运算符,涵盖算术运算和关系比较。通过示例演示了变量赋值、字符串截取、数组操作等核心功能,帮助读者掌握Shell脚本编程基础。
2025-11-25 21:18:21
1034
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅