一、线性表
线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结 构,常见的线性表:顺序表、链表、栈、队列、字符串... 线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物 理上存储时,通常以数组和链式结构的形式存储。
二、顺序表
顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储,在数组上完成数据的增删查改,顺序表的本质就是一个数组。
优点:物理空间连续,下标随机访问。 缺点:删除数据比较麻烦
1.静态顺序表
使用定长数组存储
#define N 10
typedef int SLDatatype;
//静态数据库缺点
//给小了不够用,给大了浪费
struct SeqList
{
SLDatatype a[N];
int size;
};
2.动态顺序表
使用动态开辟的数组存储。
typedef int SLDatatype;
typedef struct SeqList
{
SLDatatype* a;
int size; // 有效数据个数
int capacity; // 容量
}SL;
三、实现动态顺序表
1.接口函数
void SLInit(SL* psl);//初始化
void SLCheckCapacity(SL* psl);//检查容量
void SLDestroy(SL* psl);//释放
void SLPrint(SL* psl);//打印
void SLPushBack(SL* psl, SLDatatype X);//尾部插入
void SLPushFront(SL* psl, SLDatatype X);//头部插入
void SLPopBack(SL* psl);//尾部删除
void SLPopFront(SL* psl);//头部删除
void SLInsert(SL* psl, int pos,SLDatatype X);//中间插入
void SLErase(SL* psl, int pos);//中间删除
int SLFind(SL* psl, SLDatatype x);//查找数据
void SLModify(SL* psl, int pos, SLDatatype x);//改数据
1.顺序表初始化
初始化是注意是传值传参,还是传址传参,一定是传址传参。
void SLInit(SL* psl)
{
assert(psl);
psl->a = (SLDatatype*)malloc(sizeof(SLDatatype) * 4);
if (psl->a == NULL)
{
perror("SLInit");
return;
}
psl->capacity = 4;
psl->size = 0;
}
2.检查容量
当有效数据和容量相等时,扩大容量。
void SLCheckCapacity(SL* psl)
{
assert(psl);
if (psl->size == psl->capacity)
{
SLDatatype* pf = (SLDatatype*)realloc(psl->a, sizeof(SLDatatype) * (psl->capacity + 3));
if (pf == NULL)
{
perror("SLCheckCapacity");
return;
}
psl->a = pf;
psl->capacity += 3;
}
}
3.打印
void SLPrint(SL* psl)
{
assert(psl);
int i = 0;
for (i = 0; i < psl->size; i++)
{
printf("%d ", psl->a[i]);
}
printf("\n");
}
4.尾部插入
void SLPushBack(SL* psl, SLDatatype X)
{
assert(psl);
SLCheckCapacity(psl);//检查增容
psl->a[psl->size] = X;
psl->size++;
//SLInsert(psl, psl->size, X);
}
5.顶部插入
void SLPushFront(SL* psl, SLDatatype X)
{
assert(psl);
SLCheckCapacity(psl);
//插入数据
int i = 0;
for (i = psl->size; i > 0; i--)
{
psl->a[i] = psl->a[i - 1];
}
psl->a[0] = X;
psl->size++;
//SLInsert(psl, 0, X);
}
6.尾部删除
void SLPopBack(SL* psl)
{
assert(psl);
assert(psl->size > 0);
psl->size--;
if (psl->size > 0)
{
psl->size--;
}
//SLErase(psl, psl->size - 1);
}
7.顶部删除
void SLPopFront(SL* psl)
{
assert(psl);
assert(psl->size > 0);
int i = 0;
for (i = 1; i < psl->size; i++)
{
psl->a[i-1] = psl->a[i];
}
psl->size--;
//SLErase(psl, 0);
}
8.中间插入
void SLInsert(SL* psl, int pos, SLDatatype X)
{
assert(psl);
assert(pos >= 0 && pos <= psl->size);
SLCheckCapacity(psl);
int i = 0;
for (i = psl->size-1; i >= pos; i--)
{
psl->a[i+1] = psl->a[i];
}
psl->a[pos] = X;
psl->size++;
}
9.中间删除
void SLErase(SL* psl, int pos)
{
assert(psl);
assert(pos >= 0 && pos < psl->size);
int i = 0;
for (i = pos; i < psl->size-1; i++)
{
psl->a[i] = psl->a[i + 1];
}
psl->size--;
}
10.数据查找
找到返回下标,否则返回-1
int SLFind(SL* psl, SLDatatype x)
{
assert(psl);
int i = 0;
for (i = 0; i < psl->size; i++)
{
if (psl->a[i] == x)
{
return i;
}
}
return -1;
}
11.更改数据
void SLModify(SL* psl, int pos, SLDatatype x)
{
assert(psl);
assert(pos >= 0 && pos < psl->size);
psl->a[pos] = x;
}
12.释放顺序表
void SLDestroy(SL* psl)
{
assert(psl);
free(psl->a);
psl->a = NULL;
psl->capacity = 0;
psl->size = 0;
}
四、完整代码
SeqList.h
#pragma once
#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
typedef int SLDatatype;
//#define N 10
//
静态数据库缺点
给小了不够用,给大了浪费
//
//struct SeqList
//{
// SLDatatype a[N];
// int size;
//};
//动态顺序表
typedef struct SeqList
{
SLDatatype* a;
int size; // 有效数据个数
int capacity; // 容量
}SL;
void SLInit(SL* psl);//初始化
void SLDestroy(SL* psl);//释放
void SLPrint(SL* psl);//打印
void SLPushBack(SL* psl, SLDatatype X);//尾部插入
void SLPushFront(SL* psl, SLDatatype X);//头部插入
void SLPopBack(SL* psl);//尾部删除
void SLPopFront(SL* psl);//头部删除
void SLInsert(SL* psl, int pos,SLDatatype X);//中间插入
void SLErase(SL* psl, int pos);//中间删除
int SLFind(SL* psl, SLDatatype x);//查找数据
void SLModify(SL* psl, int pos, SLDatatype x);//改数据
SeqList.c
#define _CRT_SECURE_NO_WARNINGS
#include"SeqList.h"
void SLInit(SL* psl)//初始化
{
assert(psl);
psl->a = (SLDatatype*)malloc(sizeof(SLDatatype) * 4);
if (psl->a == NULL)
{
perror("SLInit");
return;
}
psl->capacity = 4;
psl->size = 0;
}
void SLDestroy(SL* psl)//销毁
{
assert(psl);
free(psl->a);
psl->a = NULL;
psl->capacity = 0;
psl->size = 0;
}
int SLFind(SL* psl, SLDatatype x)//查找数据
{
assert(psl);
int i = 0;
for (i = 0; i < psl->size; i++)
{
if (psl->a[i] == x)
{
return i;
}
}
return -1;
}
void SLCheckCapacity(SL* psl)//检查容量
{
assert(psl);
if (psl->size == psl->capacity)
{
SLDatatype* pf = (SLDatatype*)realloc(psl->a, sizeof(SLDatatype) * (psl->capacity + 3));
if (pf == NULL)
{
perror("SLCheckCapacity");
return;
}
psl->a = pf;
psl->capacity += 3;
}
}
void SLPushBack(SL* psl, SLDatatype X)//尾部插入
{
assert(psl);
SLCheckCapacity(psl);
//psl->a[psl->size] = X;
//psl->size++;
SLInsert(psl, psl->size, X);
}
void SLPrint(SL* psl)//打印
{
assert(psl);
int i = 0;
for (i = 0; i < psl->size; i++)
{
printf("%d ", psl->a[i]);
}
printf("\n");
}
void SLPushFront(SL* psl, SLDatatype X)//顶部插入
{
assert(psl);
SLCheckCapacity(psl);
//插入数据
int i = 0;
for (i = psl->size; i > 0; i--)
{
psl->a[i] = psl->a[i - 1];
}
psl->a[0] = X;
psl->size++;
//SLInsert(psl, 0, X);
}
void SLPopBack(SL* psl)//尾部删除
{
assert(psl);
assert(psl->size > 0);
psl->size--;
if (psl->size > 0)
{
psl->size--;
}
//SLErase(psl, psl->size - 1);
}
void SLPopFront(SL* psl)//顶部删除
{
assert(psl);
assert(psl->size > 0);
int i = 0;
for (i = 1; i < psl->size; i++)
{
psl->a[i-1] = psl->a[i];
}
psl->size--;
//SLErase(psl, 0);
}
void SLInsert(SL* psl, int pos, SLDatatype X)//中间插入
{
assert(psl);
assert(pos >= 0 && pos <= psl->size);
SLCheckCapacity(psl);
int i = 0;
for (i = psl->size-1; i >= pos; i--)
{
psl->a[i+1] = psl->a[i];
}
psl->a[pos] = X;
psl->size++;
}
void SLErase(SL* psl, int pos)//中间删除
{
assert(psl);
assert(pos >= 0 && pos < psl->size);
int i = 0;
for (i = pos; i < psl->size-1; i++)
{
psl->a[i] = psl->a[i + 1];
}
psl->size--;
}
void SLModify(SL* psl, int pos, SLDatatype x)//数据更改
{
assert(psl);
assert(pos >= 0 && pos < psl->size);
psl->a[pos] = x;
}
test.c
#define _CRT_SECURE_NO_WARNINGS
#include"SeqList.h"
void menu()
{
printf("#######################################\n");
printf("####### 1.尾部插入 2.顶部插入 #######\n");
printf("####### 3.尾部删除 4.顶部删除 #######\n");
printf("####### 5.中间插入 6.中间删除 #######\n");
printf("####### 7.查找数据 8.更改数据 #######\n");
printf("####### 9.打印数据 0.EXIT #######\n");
printf("#######################################\n");
}
int main()
{
int input = 0;
SL s;
SLInit(&s);
int num = 0;
int pos = 0;
do
{
menu();
printf("请输入选项:>");
scanf("%d", &input);
switch (input)
{
case 1:
printf("\n请输入要插入尾部的数字:>");
scanf("%d", &num);
SLPushFront(&s, num);
break;
case 2:
printf("\n请输入要插入顶部的数字:>");
scanf("%d", &num);
SLPushFront(&s,num);
break;
case 3:
SLPopBack(&s);
break;
case 4:
SLPopFront(&s);
break;
case 5:
printf("\n请输入要插入的下标:>");
scanf("%d", &pos);
printf("\n请输入要插入中间的数字:>");
scanf("%d", &num);
SLInsert(&s, pos, num);
break;
case 6:
printf("\n请输入要删除的下标:>");
scanf("%d", &pos);
SLErase(&s, pos);
break;
case 7:
printf("\n请输入要查找的数据:>");
scanf("%d", &num);
pos = SLFind(&s, num);
if (pos != -1)
{
printf("你所查找数据的下标为:>%d\n", pos);
}
else
{
printf("没有此数据\n");
}
break;
case 8:
printf("\n请输入要更改数据的下标:>");
scanf("%d", &pos);
printf("\n请输入要更改的数据:>");
scanf("%d", &num);
SLModify(&s, pos, num);
break;
case 9:
SLPrint(&s);
break;
case 0:
printf("EXIT\n");
break;
default:
printf("输入错误请重新输入\n");
break;
}
} while (input);
SLDestroy(&s);
return 0;
}
五、相关题目
1.移除元素
给你一个数组 nums
和一个值 val
,你需要 原地 移除所有数值等于 val
的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1)
额外空间并 原地 修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例
输入:nums = [0, 1, 2, 2, 3, 0, 4, 2], val = 2
输出:5, nums = [0, 1, 3, 0, 4]
解释:函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。注意这五个元素可为任意顺序。你不需要考虑数组中超出新长度后面的元素。
题解
int removeElement(int* nums, int numsSize, int val)
{
int f = 0;
int s = 0;
for(f = 0; f < numsSize; f++)
{
if(nums[f] != val)
{
nums[s] = nums[f];
s++;
}
}
return s;
}
2.合并两个有序数组
给你两个按 非递减顺序 排列的整数数组 nums1
和 nums2
,另有两个整数 m
和 n
,分别表示 nums1
和 nums2
中的元素数目。
请你 合并 nums2
到 nums1
中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1
中。为了应对这种情况,nums1
的初始长度为 m + n
,其中前 m
个元素表示应合并的元素,后 n
个元素为 0
,应忽略。nums2
的长度为 n
。
示例 :
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
题解
从两个数组中最后面开始比较,大的数放到后面,遍历一次数组后,若剩余数组还有数据,则倒序向前放入。
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
int src = m-1;//0
int dest = n-1;//0
while(src>=0 && dest>=0)
{
if(nums1[src] < nums2[dest])
{
nums1[src+dest+1] = nums2[dest];
dest--;
}
else
{
nums1[src+dest+1] = nums1[src];
src--;
}
}
while(dest >= 0)
{
nums1[dest] = nums2[dest];
dest--;
}
}
3.删除有序数组中的重复项
给你一个 非严格递增排列 的数组 nums
,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums
中唯一元素的个数。
考虑 nums
的唯一元素的数量为 k
,你需要做以下事情确保你的题解可以被通过:
- 更改数组
nums
,使nums
的前k
个元素包含唯一元素,并按照它们最初在nums
中出现的顺序排列。nums
的其余元素与nums
的大小不重要。 - 返回
k
。
示例 :
输入:nums = [0, 0, 1, 1, 1, 2, 2, 3, 3, 4]
输出:5, nums = [0, 1, 2, 3, 4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。
题解
int removeDuplicates(int* nums, int numsSize)
{
int src = 1;
int dest = 0;
while(src < numsSize)
{
if(nums[src] != nums[dest])
{
nums[++dest] = nums[src++];
}
else
{
src++;
}
}
return dest+1;
}