哈希表应用

文章讨论了如何在给定值域受限的情况下,利用计数排序算法并结合取模和数据结构优化(如vector和链表)来找出不同自然数的数量。着重于算法的正确性和空间效率的权衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例题

在这里使用一个简化版的问题进行分析:给定N个自然数,值域是[0,10^{9}],求出这N个自然数中共有多少个不同的自然数。

分析

如果值域是[0,10^{7}],那么可以利用之前介绍过的计数排序算法解决问题。定义一个[0,10^{7}]的大数组a,每个位置a[x]所对应的值为0代表这个值x并没有出现过,为1则代表这个值x出现过。然后将这N个自然数一个一个进行判断,如果a[x]为0,则这个数没统计过,把答案加1,然后把a[x]设为1,这个数字已经被统计过了,不对答案进行改变。

那么值域是[0,10^{9}],该怎么办呢?可以取一个模数mod,定义一个大小为mod的数组,然后把每个数对mod取模。如果两个数对mod取模得到相同的值,那么就认为两个数是相同的。代码如下:

#include<iostream>
#define mod 233333
using namespace std;
int n,x,ans,a[mod+2];
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>x;
		x%=mod;
		if(!a[x]){
			a[x]=1;
			ans++;
		}
	}
	cout<<ans<<endl;
	return 0;
}

可以发现,这个处理方法的优势和劣势都很明显。优势是这个做法有效减少了空间的利用,只需要定义一个大小为mod的数组。而劣势是,如果有两个不同的数恰好对mod取模之后得到相同的结果,那这个算法的正确性就得不到保证了--算法会认为这两个数是同一个数,但实际上是两个不同的数,但实际上是两个不同的数,产生了冲突。

该如何优化这个算法,使得其既保证了正确性,又降低了时间和空间复杂度呢?可以把一个int的数组改成一个vector<int>的数组或者一个链表,然后将取模后为同一个数的所有值都存在其所对对应的vector或者链表中。

然后每次判断一个数x是否存在的时候,遍历x%mod为止的vector或链表中所有元素,看看是否有x即可。下面给出使用vector存元素的代码

#include<iostream>
#include<vector>
#define mod 233333
using namespace std;
int n,x,ans;
vector <int> linker[mod+2];
void insert(int x){
	for(int i=0;i<linker[x%mod].size();i++){
		if(linker[x%mod][i]==x){
			return;
		}
	}
	linker[x%mod].push_back(x);
	ans++;
}
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>x;
		insert(x);
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值