P3916 图的遍历题解

文章介绍了如何在给定有向图中,利用深度优先遍历和反向边的策略,高效地计算每个节点能到达的最大编号,避免重复计算并处理环路问题。
摘要由CSDN通过智能技术生成

题目

给出N个点,M条边的有向图,对于每个点v,求A(v) 表示从点v出发,能到达的编号最大的点。

输入输出格式

输入格式

第1行2个整数N,M,表示点数和边数。

接下来M行,每行2个整数Ui​,Vi​,表示边 (Ui​,Vi​)。点用1,2,…,N编号。

输出格式

一行N个整数A(1),A(2),…,A(N)。

输入输出样例

输入样例

4 3
1 2
2 4
4 3

输出样例

4 4 3 4

解析

针对这个题目如果想对每个点做一次深度优先遍历或广度优先遍历,对于一次遍历的复杂度是O\left ( N+M \right ),所以总复杂度是O\left ( N\left ( N+M \right ) \right ),不能接受。

所以一个简单的优化的想法是,在做深度优先遍历时,当需要求A\left ( u \right )时,先设A\left ( u \right )为自己的点标号u,然后求出它能直接到达的点v的A\left ( v \right ),然后让当前的A\left ( u \right )A\left ( v \right )取个最大值。这样求出所有的A\left ( v \right )后,也得到了最后的A\left ( v \right ),就避免了重复的计算。

但很可惜的是,这种方法有一个致命的漏洞。当使用深度优先遍历时,可能会搜索到之前正在被搜索而没有得到答案的点(也就是遇到环的情况)

为了解决这个出现环时答案没有更新好的问题,可以考虑换一个方法理解。之前是让点v去找它能到达的最大的点,现在让最大的点去告诉哪些点能到达它。用反向边建图,也就是,原图中如果有一条边<u,v>,那么不建<u,v>,而是建<v,u>。然后枚举点时从n枚举到1.然后从当前枚举的点u出发,让能用深度优先遍历或广度优先遍历到的且没有被更新过的点v的A\left (v\right )=u(因为在从n枚举到1时,被更新过的点一定是用比当前数字大的点更新的)。

#include<iostream>
#include<vector>
#define maxn 100005
using namespace std;
int n,m;
vector<int>p[maxn];
int a[maxn];
void solve(int x,int v){
	a[x]=v;//将点x的答案更新为v 
	for(int i=0;i<p[x].size();i++){
		if(!a[p[x][i]]){//如果答案没有被更新过,则用当前值的点更新 
			solve(p[x][i],v);
		}
	}
}
int main(){
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		int u,v;
		cin>>u>>v;
		p[v].push_back(u);
	}//反向建边 
	for(int i=n;i>=0;i--){
		if(a[i]==0){
			solve(i,i);
		}
	}
	for(int i=1;i<=n;i++){
		cout<<a[i]<<" ";
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值