NOJ 复杂数据 分数加减法

 本题有以下几点需要注意

1.为了化简分子分母,需要用到最大公约数,即gcd函数,采用欧几里得算法编写gcd函数,即两个数的最大公约数为较小数与大数模小数的余数的最大公约数,由此构成递归结构。

证明:gcd(a,b)=gcd(b,a%b)  (假设a>b)

\becausea=p*b+q    (q<b)

a\equiv p\times b\equiv 0(mod gcd(a,b))

\thereforeq\equiv 0(modgcd(a,b))

故gcd(a,b)为q与b的公约数

若gcd(b,q)>gcd(a,b)

a\equiv 0(modgcd(b,q))

则gcd(a,b)=gcd(b,q)矛盾

故gcd(b,q)=gcd(a,b)

\therefore证毕

2.输入为字符,ASCII-48后才为具体数值(‘1’ASCII为49)

3.结果为1,0为特殊情况,需要单独讨论

#include <iostream>
#include <cstdio>
using namespace std;

int gcd(int a,int b)
{
    if(a>b){
        if(a%b==0) return b;
        else gcd(b,a%b);
    }
    else if(b>a){
        if(b%a==0) return a;
        else gcd(a,b%a);
    }
    else if(a==b){
        return a;
    }
}

int main()
{
    int a,b,c,d;
    int i=0,fz,fm;
    char p[7];
    while(1){
        cin>>p[i];
        i++;
        if(i==7)break;
    }
    a=p[0]-48;
    b=p[2]-48;
    c=p[4]-48;
    d=p[6]-48;

    if(p[3]=='+'){
        if(a*d+b*c==0)cout<<0;
        else{
        fm=(b*d)/gcd(a*d+b*c,b*d);
        fz=(a*d+b*c)/gcd(a*d+b*c,b*d);

        if(fz==fm)cout<<1;
        else cout<<fz<<'/'<<fm;
        }
    }
    else if(p[3]=='-'){
        if((a*d-b*c)==0)cout<<0;
        else{
        fm=(b*d)/gcd(a*d-b*c,b*d);
        fz=(a*d-b*c)/gcd(a*d-b*c,b*d);

        if(fz==fm)cout<<1;
        else cout<<fz<<'/'<<fm;
        }
    }
    return 0;
}
 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值