线性方程组的数值解法-1

1.两种解法

直接解法:直接计算求解精确解,适用于低阶稠密方程组

迭代法:某种极限过程逐步逼近线性方程组的精确解,适用于大型稀疏方程组

2.向量序列收敛的定义

在Rn空间中,一切范数是等价的,因此无穷范数可以更换为其他范数,收敛定理可以写为:

3.误差分析

在求解线性方程组Ax=b时,考虑A和b的误差对解x的影响

  • b有误差

  • A有误差

  • 总误差

4.迭代法

将Ax=b改写为x=Bx+f,B=I-M^-1*A

5.Richardson迭代

收敛条件为ρ(I-A)<1

6.Jacobi迭代法

把A分解为D+L+U(注意有的地方是D-L-U,即L代表A的下三角矩阵的相反数,U为A的上三角矩阵的相反数)

对应迭代公式为:这里应注意避免aii等于0,可以通过调整方程组顺序避免这种情况

7.Gauss-Seidel迭代

Jacobi迭代中,x的各元素均由前一轮的x的各元素计算得到,没有利用上已经计算的当前轮的元素。改进后

注意当把A分解为D-L-U时,矩阵迭代公式应为x=(D-L)^-1*Ux + (D-L)^-1*b

注意B矩阵存在的条件是这个下三角矩阵可逆,即aii不等于0

注意J和GS在不同情况下效果不同

8.收敛性判断(B的谱半径小于1)

误差递归公式

从而得到k轮误差和初始误差的关系

要使k轮误差趋于0的充要条件是:

上述条件成立的充要条件是:

证明思路:

  • 必要性:B^K趋于0,则其范数趋于0;B的谱半径为λmax,则B^K的谱半径为λmax^K,可以通过jordan标准型证明;谱半径小于等于任何范数,B^K范数趋于0,因此B^K谱半径趋于0,即λmax^K趋于0,那么λmax趋于0,那么B的谱半径趋于0
  • 充分性:对于任意ε大于0,存在范数使得B的范数小于等于ε和谱半径之和;B的谱半径小于1,那么存在B的范数小于1,那么B^K的范数小于等于K个B的范数乘积,当K趋于无穷大时,B^K趋于0

注意在实际判断时,可以通过计算B的范数<1这个充分条件来判断,其中的范数可以取计算简单的(行和范数∞或列和范数1)

另一个充分条件:若A为严格对角占优矩阵,则J和GS迭代均收敛。严格对角占优意味着对角元素等于行内其他元素之和,证明过程为,求出B,证明B的特征值都小于1,反证法,当特征值大于1时,特征多项式不等于0,因为特征根矩阵也是严格对角占优,故行列式不为0

可以利用上述两种方法交换线性方程组的顺序,从而获取收敛的方法

收敛速度定义:

误差估计:

截图源自【《数值分析》| 华科 | 研究生基础课】https://www.bilibili.com/video/BV1AK4y1k7Px?p=34&vd_source=a53b34e44cbfd40d72a5b337c3e5a13d

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值