- 博客(9)
- 收藏
- 关注
原创 小土堆pytorch学习笔记二
本文介绍了PyTorch神经网络的基本组件和使用方法。主要内容包括:1)使用torchvision加载CIFAR10数据集并进行数据预处理;2)DataLoader实现批量数据加载;3)卷积层、池化层、非线性激活函数(ReLU/Sigmoid)和全连接层的原理与实现;4)使用Sequential简化网络搭建;5)通过TensorBoard可视化网络结构和训练过程。文章通过具体代码示例展示了如何构建一个完整的CNN模型,包括卷积操作、下采样、特征展平和分类输出等步骤,并演示了数据处理流程和模型可视化方法。
2025-09-30 16:48:17
619
原创 小土堆pytorch学习笔记一
本文介绍了如何使用PyTorch处理图像数据集的三个核心内容:1. 自定义Dataset类 2. TensorBoard可视化 3. Transforms的使用
2025-09-24 20:21:06
1233
原创 吴恩达机器学习笔记五
机器学习中的偏差和方差是影响模型性能的关键因素:偏差反映模型未能学习数据核心规律,导致欠拟合;方差反映模型过度拟合噪声,导致过拟合。解决高方差可通过简化模型、数据增强或正则化,解决高偏差则需增加模型复杂度或补充特征。决策树通过信息增益选择最优划分特征,以降低熵值。模型评估中,准确率和召回率的平衡可通过F-score衡量。迁移学习可利用预训练模型提升小数据集上的表现。机器学习完整周期包括数据收集、模型训练、部署维护等环节。
2025-09-19 09:06:24
1045
原创 吴恩达机器学习笔记四
本文系统介绍了深度学习中几个关键概念:1.激活函数部分分析了Sigmoid、ReLU等函数的特性及选择策略;2.多类别分类重点讲解了Softmax函数及其损失函数;3.多标签分类阐释了与多类别分类的区别,并给出代码实例;4.Adam优化器部分对比了其与传统优化器的优势;5.卷积神经网络部分解析了CNN的核心特征提取机制。
2025-09-16 15:33:33
592
原创 吴恩达机器学习笔记二
机器学习算法优化技术总结,涵盖向量化加速计算、多线性回归梯度下降、特征归一化、学习率调节、逻辑回归分类、梯度下降实现及正则化解决过拟合。
2025-09-12 09:20:08
1211
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人