自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 小土堆pytorch学习笔记二

本文介绍了PyTorch神经网络的基本组件和使用方法。主要内容包括:1)使用torchvision加载CIFAR10数据集并进行数据预处理;2)DataLoader实现批量数据加载;3)卷积层、池化层、非线性激活函数(ReLU/Sigmoid)和全连接层的原理与实现;4)使用Sequential简化网络搭建;5)通过TensorBoard可视化网络结构和训练过程。文章通过具体代码示例展示了如何构建一个完整的CNN模型,包括卷积操作、下采样、特征展平和分类输出等步骤,并演示了数据处理流程和模型可视化方法。

2025-09-30 16:48:17 619

原创 小土堆pytorch学习笔记一

本文介绍了如何使用PyTorch处理图像数据集的三个核心内容:1. 自定义Dataset类 2. TensorBoard可视化 3. Transforms的使用

2025-09-24 20:21:06 1233

原创 吴恩达机器学习笔记六

本文介绍了四种机器学习算法:1. 随机森林、 XGBoost、K均值算法、异常检测

2025-09-22 19:05:24 959

原创 吴恩达机器学习笔记五

机器学习中的偏差和方差是影响模型性能的关键因素:偏差反映模型未能学习数据核心规律,导致欠拟合;方差反映模型过度拟合噪声,导致过拟合。解决高方差可通过简化模型、数据增强或正则化,解决高偏差则需增加模型复杂度或补充特征。决策树通过信息增益选择最优划分特征,以降低熵值。模型评估中,准确率和召回率的平衡可通过F-score衡量。迁移学习可利用预训练模型提升小数据集上的表现。机器学习完整周期包括数据收集、模型训练、部署维护等环节。

2025-09-19 09:06:24 1045

原创 吴恩达机器学习笔记四

本文系统介绍了深度学习中几个关键概念:1.激活函数部分分析了Sigmoid、ReLU等函数的特性及选择策略;2.多类别分类重点讲解了Softmax函数及其损失函数;3.多标签分类阐释了与多类别分类的区别,并给出代码实例;4.Adam优化器部分对比了其与传统优化器的优势;5.卷积神经网络部分解析了CNN的核心特征提取机制。

2025-09-16 15:33:33 592

原创 吴恩达机器学习笔记三

本文系统阐述了神经网络训练的核心机制

2025-09-15 18:29:47 730

原创 吴恩达机器学习笔记二

机器学习算法优化技术总结,涵盖向量化加速计算、多线性回归梯度下降、特征归一化、学习率调节、逻辑回归分类、梯度下降实现及正则化解决过拟合。

2025-09-12 09:20:08 1211

原创 吴恩达机器学习笔记一

本文根据吴恩达的机器学习视频课进行笔记记录,介绍了线性回归和梯度下降的基本概念。

2025-09-09 15:42:55 245

原创 GIS基础,arcmap坐标转换

本文介绍了GIS基础知识和坐标数据转换方法

2025-09-05 20:45:20 852 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除