LCR 193. 二叉搜索树的最近公共祖先

文章讲述了如何在给定的二叉搜索树中找到两个指定节点的最近公共祖先,通过比较节点值的相对位置进行循环搜索,直到找到满足条件的最近公共祖先节点。
摘要由CSDN通过智能技术生成

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点2和节点8的最近公共祖先是6。

示例 2:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点2和节点4的最近公共祖先是2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉搜索树中。

思路: 

1、二叉搜索树(Binary Search Tree),(又:二叉查找树,二叉排序树)它或者是一棵空树,或者:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。

2、最近公共祖先有三种情况:p,q在root的两侧;root=p,q在root左(右)子树中;root=q,p在root左(右)子树中。

3、循环搜索

根据(p->val - root->val) * (q->val - root->val) <= 0来判断p,q是否分别为root的左子树、右子树(p、q有一个等于root也满足)。

满足则root即为最近公共祖先,返回root。

不满足则p、q同时为root左子树或右子树,向左子树或右子树继续迭代。

4、返回root。

 代码实现:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        while(root)
        {
            if((p->val - root->val) * (q->val - root->val) <= 0)      //p、q在异侧或p、q其中一个等于root
                return root;
            else                                                      //p、q在同侧
                root = q->val > root->val ? root->right : root->left;
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值