给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点2和节点8的最近公共祖先是6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点2和节点4的最近公共祖先是2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
- 所有节点的值都是唯一的。
- p、q 为不同节点且均存在于给定的二叉搜索树中。
思路:
1、二叉搜索树(Binary Search Tree),(又:二叉查找树,二叉排序树)它或者是一棵空树,或者:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。
2、最近公共祖先有三种情况:p,q在root的两侧;root=p,q在root左(右)子树中;root=q,p在root左(右)子树中。
3、循环搜索
根据(p->val - root->val) * (q->val - root->val) <= 0来判断p,q是否分别为root的左子树、右子树(p、q有一个等于root也满足)。
满足则root即为最近公共祖先,返回root。 不满足则p、q同时为root左子树或右子树,向左子树或右子树继续迭代。
4、返回root。
代码实现:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
while(root)
{
if((p->val - root->val) * (q->val - root->val) <= 0) //p、q在异侧或p、q其中一个等于root
return root;
else //p、q在同侧
root = q->val > root->val ? root->right : root->left;
}
}
};