数据仓库建模

本文详细介绍了数据仓库建模的过程,包括ER实体建模和维度建模。ER实体建模强调实体、属性和关系,用于OLTP系统设计。维度建模由Ralph Kimball提出,分为事实表和维度表,适用于数据分析和决策支持。两种建模方法各有特点,ER模型适合数据整合,维度模型则专注于快速响应分析需求。
摘要由CSDN通过智能技术生成

目录

         一、数据仓库建模目标

二、ER实体建模

1. ER实体建模

2 实体之间的对照关系

3. ER 建模的图形表示

三、维度建模

 1.概念

 2.  事实表

 3.  维度表

四、建模方法总结


一、数据仓库建模目标

为什么要进行数据仓库建模,数据仓库建模的目标是通过建模的方法更好的组织、存储数据,以便在性能、成本、效率和数据质量之间找到最佳平衡点。

一般主要从下面四点考虑

①访问性能:能够快速查询所需的数据,减少数据I/O;
②数据成本:减少不必要的数据冗余,实现计算结果数据复用,降低大数 据系统中的存储成本和计算成本;
③使用效率:改善用户应用体验,提高使用数据的效率;
④数据质量:改善数据统计口径的不一致性,减少数据计算错误 的可能性,提供高质量的、一致的数据访问平台;

二、ER实体建模

1. ER实体建模

ER 模型是数据库设计的理论基础,当前几乎所有的 OLTP 系统设计都采用 ER 模型建模的方式。

在信息系统中,将事务抽象为“实体”,“属性”,“关系”来表示数据关联和事物描述;这种对数据的抽象建模通常被称为 ER 实体关系模型。

实体通常为参与到过程中的主体,客观存在的,比如商品、仓库、货位、汽车,此实体非数据库的实体表;

属性对主体的描述、修饰即为属性,比如商品的属性有商品名称、颜色、尺寸、重量、产地等;

关系现实的物理事件是依附于实体的,比如商品入库事件,依附实体商品、货位, 就会有“库存”的属性产生;用户购买商品,依附实体用户、商品,就会有“购买数量”、

“金额”的属性产品。

2 实体之间的对照关系

实体之间建立关系时,存在对照关系:

1:1,即 1 对 1 的关系,比如实体人、身份证,一个人有且仅有一个身份证号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值