书生大模型第二期课程3

本文详细介绍了RAG技术,包括其原理、与Fine-tune的区别,以及在茴香豆应用中的实践。涉及搭建步骤,如环境配置、知识库创建和向量数据库构建,以及如何在InternStudio中实施RAG助手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要从个方面进行了茴香豆个人RAG助手原来讲解:

一、理论介绍

搭建RAG智能助理

RAG是什么、原理、RAG vs Fine-tune、架构、向量数据库、评估和测试

茴香豆是一款比较新的应用,在原始的InternLM2-Chat-7B中未出现,在对原始模型7B无法回答的问题

RAG(Retrieval Augmented Generation)是一种结合检索和生成的技术,旨在通过利用外部知识库来增强大语言模型(LLMs)的性能。它通过检索用户输入的信息来生成更加准确和更丰富的回答

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值