说说斐波那契数列

斐波那契数列是一个非常神奇的数列:它有很多的性质。在后文中,我们用 f n f_n fn 表示第一项和第二项都为 1 1 1 的斐波那契数列, F n F_n Fn 表示第一项和第二项为任意正整数的斐波那契数列。

公式

先说一下递推公式:

F n = F n − 1 + f n − 2 F_n=F_{n-1}+f_{n-2} Fn=Fn1+fn2

我们再来说一下斐波那契的通项公式:

f n = ( 1 + 5 2 ) n − ( 1 − 5 2 ) n 5 f_n=\frac{(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2})^n}{\sqrt{5}} fn=5 (21+5 )n(215 )n

由于编程语言一般有精度问题,所以我们一般不用这个公式,了解即可。

性质

只对于 F F F

卡西尼性质

F n − 1 F n + 1 − ( F n ) 2 = ( − 1 ) n F_{n-1}F_{n+1}-(F_n)^2=(-1)^n Fn1Fn+1(Fn)2=(1)n
F n + k = F k F n + 1 + F k − 1 F n F_{n+k}=F_kF_{n+1}+F_{k-1}F_n Fn+k=FkFn+1+Fk1Fn

小小地扩展一下

当我们取上面一条行之中的 k k k n n n 时:

F 2 n = F n F n + 1 + F n − 1 F n F_{2n}=F_nF_{n+1}+F_{n-1}F_n F2n=FnFn+1+Fn1Fn
等号右边提取一个 F n F_n Fn 得到:

F 2 n = F n ( F n + 1 + F n − 1 ) F_{2n}=F_n(F_{n+1}+F_{n-1}) F2n=Fn(Fn+1+Fn1)

由于 F n + 1 + F n − 1 F_{n+1}+F_{n-1} Fn+1+Fn1 为整数,得到 F n ∣ F 2 n F_n|F_{2n} FnF2n

如果 k k k 2 n 2n 2n

F 3 n = F 2 n F n + 1 + F 2 n − 1 F n F_{3n}=F_{2n}F_{n+1}+F_{2n-1}F_n F3n=F2nFn+1+F2n1Fn
F 2 n = F n ( F n + 1 + F n − 1 ) F_{2n}=F_n(F_{n+1}+F_{n-1}) F2n=Fn(Fn+1+Fn1) 带入上述式子:

F 3 n = ( F n ( F n + 1 + F n − 1 ) ) F n + 1 + F 2 n − 1 F n F_{3n}=(F_n(F_{n+1}+F_{n-1}))F_{n+1}+F_{2n-1}F_n F3n=(Fn(Fn+1+Fn1))Fn+1+F2n1Fn

等号右边还是可以提出一个 F n F_n Fn

所以 F n ∣ F 3 n F_n|F_3n FnF3n

所以对于每一个 k = p { p ≥ 1 } k=p\{p\ge1\} k=p{p1} p p p 为整数,若 p − 1 p-1 p1 成立,则 p p p 成立。而又 p = 1 p=1 p=1 成立,所以对于任意一个满足条件的 p p p F n ∣ F n k F_n|F_{nk} FnFnk 成立。

上属性质还可逆,即:若 F a ∣ F b F_a|F_b FaFb,则 a ∣ b a|b ab

GCD 性质

gcd ⁡ ( F m , F n ) = F gcd ⁡ ( m , n ) \gcd(F_m,F_n)=F_{\gcd(m, n)} gcd(Fm,Fn)=Fgcd(m,n)

其他的

另类通项公式

如果我们知道了 f f f 数列的任何一项,而且还知道 F 1 F_1 F1 F 2 F_2 F2,那么我们用 F 1 F_1 F1 F 2 F_2 F2 表示一下这个 F F F 数列的每一项:

F 1 = F 1 F_1=F_1 F1=F1

F 2 = F 2 F_2=F_2 F2=F2

F 3 = F 1 + F 2 F_3=F_1+F_2 F3=F1+F2

F 4 = F 2 + F 3 = F 1 + 2 F 2 F_4=F_2+F_3=F_1+2F_2 F4=F2+F3=F1+2F2

F 5 = 2 F 1 + 3 F 2 F_5=2F_1+3F_2 F5=2F1+3F2

F 6 = 3 F 1 + 5 F 2 F_6=3F_1+5F_2 F6=3F1+5F2

F 7 = 5 F 1 + 8 F 2 F_7=5F_1+8F_2 F7=5F1+8F2

F 8 = 8 F 1 + 13 F 2 F_8=8F_1+13F_2 F8=8F1+13F2

发现什么规律?
若:

F x = a x F 1 + b x F 2 F_x=a_xF_1+b_xF_2 Fx=axF1+bxF2

用递推公式表示一下 F x F_x Fx

F x = F x − 1 + F x − 2 F_x=F_{x-1}+F_{x-2} Fx=Fx1+Fx2

F x = a x F 1 + b x F 2 F_x=a_xF_1+b_xF_2 Fx=axF1+bxF2 展开等号右边:

F x = a x − 1 F 1 + b x − 1 F 2 + a x − 2 F 1 + b x − 2 F 2 = ( a x − 1 + a x − 2 ) F 1 + ( b x − 1 + b x − 2 ) F 2 F_x=a_{x-1}F_1+b_{x-1}F_2+a_{x-2}F_1+b_{x-2}F_2=(a_{x-1}+a_{x-2})F_1+(b_{x-1}+b_{x-2})F_2 Fx=ax1F1+bx1F2+ax2F1+bx2F2=(ax1+ax2)F1+(bx1+bx2)F2

发现系数也是一个斐波那契数列,代换一下:

F x = f x − 2 F 1 + f x − 1 F 2 F_x=f_{x-2}F_1+f_{x-1}F_2 Fx=fx2F1+fx1F2

前提是 x ≥ 3 x\ge3 x3

前缀和

我们设 S x S_x Sx ∑ i = 1 x F x \sum_{i=1}^{x}F_x i=1xFx,那么还是用 F 1 F_1 F1 F 2 F_2 F2 表示 S S S 的任意一项:

S 1 = F 1 S_1=F_1 S1=F1

S 2 = F 1 + F 2 S_2=F_1+F_2 S2=F1+F2

S 3 = 2 F 1 + 2 F 2 S_3=2F_1+2F_2 S3=2F1+2F2

S 4 = 3 F 1 + 4 F 2 S_4=3F_1+4F_2 S4=3F1+4F2

S 5 = 5 F 1 + 7 F 2 S_5=5F_1+7F_2 S5=5F1+7F2

S 6 = 8 F 1 + 12 F 2 S_6=8F_1+12F_2 S6=8F1+12F2

S 7 = 13 F 1 + 20 F 2 S_7=13F_1+20F_2 S7=13F1+20F2

系数有点东西,从系数下手:

S x = f x F 1 + ( f x + 1 − 1 ) F 2 S_x=f_xF_1+(f_{x+1}-1)F_2 Sx=fxF1+(fx+11)F2

两个数列相加

我们假设有两个数列 F 1 F1 F1 F 2 F2 F2,设它们的长度都为 n n n,求和,设和为 F 3 F3 F3

F 3 i = F 1 i + F 2 i = F 1 i − 1 + F 1 i − 2 + F 2 i − 1 + F 2 i − 2 = F 3 i − 1 + F 3 i − 2 F3_i=F1_i+F2_i=F1_{i-1}+F1_{i-2}+F2_{i-1}+F2_{i-2}=F3_{i-1}+F3{i-2} F3i=F1i+F2i=F1i1+F1i2+F2i1+F2i2=F3i1+F3i2

所以斐波那契数列求和后求和部分还是满足斐波那契数列的性质。

增长趋势

斐波那契数列的增长速度是指数级的,后一项约为前一项的第 1.618 1.618 1.618 倍。对的,黄金分割比。

红色的是斐波那契数列,绿色的是 y = 1.61 8 x y=1.618^x y=1.618x,两者几乎重叠。

End

斐波那契数列是个神奇的东西,还有很多的性质。

此博客大部分内容整理于 oi-wiki

  • 12
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值