链接
知识点
动态规划,搜索,dfs
思路
对于普通的地图问题,我们直接利用深度优先搜索即可解决。但是本题有一个限制,就是变换的方向只能有k次。那么我们要如何去思考这个限制呢,不妨在我们搜索的时候不仅记录位置,还记录一个变换方向的次数,当没有变换次数的时候就不允许在变换了。好,我们解决了变换方向的限制,那么要如何记录方案数呢?
考虑利用动态规划。
定义状态 表示起点为当前方向为∈(0,1) 并且已经改变了次方向的方案数。
- 为向下时,
- 为向右时,
利用记忆化搜索可以完成状态转移。
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
int dp[N][N][4][10]; //dp[x][y][d][step] 表示起点为(x,y)当前方向为 d∈(0,1) 并且已经改变了 step 次方向的方案数。
int dx[2] = {0,1};
int dy[2] = {1,0};
char MAP[N][N];
int n,m,k;
bool check(int x,int y){
if(x == n && y == m) return true;
return false;
}
bool pd(int x,int y,int step){
if(x < 1 || x > n || y < 1 || y > m || MAP[x][y] == '#' || step > k){
return false;
}
return true;
}
int dfs(int x,int y,int d,int step){
if(!pd(x,y,step)) return 0;
if(check(x,y)) return 1; //方案数 + 1
if(dp[x][y][d][step]) return dp[x][y][d][step]; //记忆化
int res = 0;
for(int i = 0; i < 2; i++){ //状态转移
int nx = x + dx[i];
int ny = y + dy[i];
res += dfs(nx,ny,i,step + (i!=d));
}
dp[x][y][d][step] = res; //记忆化,将从(x,y)到(N,M)的总方案数保存起来
return dp[x][y][d][step]; //返回从(x,y)到(N,M)的方案数
}
int main()
{
cin >> n >> m >> k;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= m; j++){
cin >> MAP[i][j];
}
}
int ans = 0;
//此处要注意一点,起点(1,1)处是没有当前方向的,需要前进一步才有方向
if(MAP[1][2] != '#') ans += dfs(1,2,0,0); //从(1,2) 开始
if(MAP[2][1] != '#') ans += dfs(2,1,1,0); //从(2,1) 开始
cout << ans << endl;
return 0;
}