矩阵的相似对角化

相似

存在可逆矩阵P使得,P^{-1}AP=B

正交相似

存在正交矩阵Q使得,Q^{T}AQ=BQ^{-1}AQ=B

--------------------------------------------------------------------------------------------------------------------------

矩阵的相似对角化

一,若A~对角阵,则称矩阵A可以相似对角化

二,A可以相似对角化的充要条件是:

                A有n个线性无关的特征向量

                若A有重根,则A的重根个数k=对应的特征向量个数k

                等价于判定秩n-Rank(\lambda _{i}I-E)是否等于k

三,充分非必要条件:若A有n个互不相同特征值则A可以相似对角化

实对称矩阵的相似对角化

一,实对称矩阵A的属于不同特征值的特征向量是正交的

二,(可以证明)实对称矩阵A的k重特征值恰好对应k个特征向量

三,将二中k个向量正交化,将n个向量单位化可求得n个单位正交的特征向量组,令Q=         Q=(\xi _{1},\xi _{2},..\xi _{n})

四,因此实对称矩阵一定能正交相似对角化Q^{T}AQ=\Lambda

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值